Rick Stevens

Rick Stevens

Professor
Department of Computer Science
Senior Fellow
Computation Institute
Associate Laboratory Director
Computing, Environment and Life Sciences, Argonne

Interests

Systems

Contact Information

University of Chicago
5640 S. Ellis Avenue, Room 405
Chicago, IL 60637
Phone: (773)834-6816
Fax: (773)834-6818
stevens@cs.uchicago.edu

Research

I am interested in the development of innovative tools and techniques that enable computational scientists to solve large-scale problems more effectively on the most advanced high-performance computers. Specifically, my research focuses on three principal areas: collaborative visualization environments, high-performance computer architectures, and performance modeling.

In the area of collaborative visualization, I am exploring the use of virtual reality in the visualization of scientific data and processes. My efforts include improving displays, recording, and playback of virtual reality experiences; developing new methods for tracking and control and close coupling with parallel supercomputers; and devising new ways of collaborating in virtual environments. Of particular interest to me is teleimmersion -- strategies for synthesizing networking and multimedia technologies to enhance the development of wide-area wide-area collaborative computational science.

In the area of high-performance computers, I am studying approaches to computing at the Petaflops Scale, focusing on analysis, modeling, and simulation tools for these ultra-high-performance computers. I am also particularly interested in algorithm and software for multithreaded computer architectures and for hierarchical processor and memory architectures.

In a related area, I am investigating analytic performance models that will help researchers understand the performance relationship between high-performance computer systems and scientific applications. My goal is to enable scientific simulations to achieve the very high performance potential of next-generation computer architectures with deep memory hierarchies.

Projects

Laboratories