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1 Introduction 
In this paper, we outline the design of a non-
deterministic finite state automaton (NFSA) for 
natural language morphology, and compare it to 
previous work in unsupervised learning of 
morphology. In Section 2, we describe the 
nature of an MDL-based system for 
unsupervised learning of morphology, using the 
signature-based model of Goldsmith 2001 as an 
example, and we describe some drawbacks of 
the signature-based model. In Section 3, we 
present an alternative model which is a non-
deterministic finite state automaton, 
distinguishing between convergent and 
divergent states, a difference that corresponds to 
inflectional versus derivational morphology and 
specify an MDL model based it. In Section 4, 
we review the ways in which a Patricia trie has 
been used by several authors as a bootstrap 
means for finding morphemes, and the final 
sections describe the ways in which we are 
focusing on obtaining layers of morphological 
structure.  

2 Signatures 

2.1 Earlier work 
In Goldsmith 2001, a model for unsupervised 
learning of natural language morphology is 
presented, employing Minimum Description 
Length (MDL) analysis as a tool to provide an 
objective function in selecting the optimal 
morphology for a natural language corpus. An 
MDL-based analysis of this sort is, in effect, a 
specific and explicit mapping M from corpora to 
a data structure of a particular sort, a data 
structure that can assign a probability to each 
word of the corpus and whose treatment of the 
data can reasonably be interpreted as a 
morphological analysis (and thus be compared 

with a morphological gold standard established 
for particular selected corpora or for a 
language). Such a data structure is, we may say, 
a morphology.   
 
In that paper, the data structure was chosen with 
an implicit bias towards European languages: 
not intentionally, but in fact, and to some degree 
for convenience. The morphology that was 
employed was a set of three lists: a list of stems, 
a list of suffixes, and a list of signatures. A 
signature is a set of suffixes, all of which appear 
following one or more stems in the corpus. From 
a formal point of view, a signature is defined as 
a pair of lists of pointers: a list of pointers to 
stems, and a list of pointers to suffixes (or 
prefixes; we will omit explicit reference to that 
alternative from here on).  
 
The heart of MDL analysis is the selection of the 
particular morphology which, given a particular 
corpus, minimizes the description length of the 
corpus, where the description length is defined 
as the information length of the morphology 
plus the compressed length of the corpus when 
we use the morphology to define a probability 
distribution whose support includes the corpus. 
If the morphology is capable of assigning a 
probability to each word in the corpus, then we 
calculate the compressed length of the corpus as 
the sum of the base-2 logarithm of the inverse 
probability of each word in the corpus, as 
calculated by the morphology.  
 
MDL informs us that for any given corpus C, we 
wish to choose the particular morphology that 
minimizes the description length, but MDL does 
not suggest how to find it. In Goldsmith 2001, a 
general strategy composed of a bootstrap 
heuristic and a sequence of incremental 
heuristics is outlined, and a detailed description 
is given in Goldsmith 2004. Open source for this 
software is available at linguistica.uchicago.edu. 



2.2 Concerns with a signature-based 
morphology 

A signature-based morphology of the sort we 
have just described is well-designed to describe 
the morphology of a language in which most of 
the morphological complexity is found in words 
of one or two morphemes. When there is a 
significant proportion of words with more than 
two morphemes, this approach is still capable of 
working well in some cases. For example, the 
process can be reapplied to the stems which 
have been discovered, thus finding 
morphological relationships between stems.  
 
However, it is not uncommon in the world’s 
languages (though not in Indo-European 
languages) for there to be a sequence of four or 
more morphological positions in a word, each of 
which can be realized in a different manner, as 
in a Swahili verb in (1) (this table simplifies the 
facts a bit for purposes of exposition, in 
particular leaving out the system of suffixes). 
 
(1) Swahili verb 
Subject 
marker 

Tense 
marker 

Object 
marker 

Verb stem

ni ‘I’ 
a ‘s/he’ 
tu ‘we’ 
wa ‘they’ 

li ‘past’ 
na ‘present’ 
 

ni ‘me’ 
tu ‘us’ 
wa ‘them’ 

fanya ‘do’ 
sema 
‘speak’ 
ona ‘see’ 

 
A signature-based morphology is not well-
designed to deal with a language of this sort, for 
at least two reasons. One reason is that the 
morphological root is in the center of the word; 
there is both a very rich prefixal inflectional 
system, and a reasonably rich derivational 
suffixal system, details of which we have 
omitted from (1); we return below to the 
relevance of the inflectional/derivational 
distinction. The second reason is that if we 
successively perform a morphological operation 
that peels off morphemes from one end (or the 
other), there will not, in general, be a 
homogeneity to the morphemes pulled off at any 
one iteration.1 

                                                      
1 Let us clarify that with a simple example. Suppose 
there were a language with a set of verbal suffixes 
{ing, ed, s} and a final interrogative suffix {je}. 
Some verbs would be of the form  {X-ing, X-ed, X-s}, 
and some of the form {X-ing-je, X-ed-je, X-s-je}. The 
first suffixal iteration would extract the suffixes {je, 

Indeed, concerns along these lines do arise even 
in the context of European languages. For 
example, in French and other Romance 
languages, adjectival stems are followed by a 
masculine or feminine suffix (French: -e- 
feminine, -Ø- masculine), followed by a number 
marker (French: -Ø singular, -s plural). If the 
adjective itself is morphologically complex, this 
leads to an analysis such as: 
 
(2)  

computationn -ell -e  -s 
computation- adj. feminine plural 

 
 
In the example in (2), the root is the noun 
“computation”, followed by a suffix “ell” 
forming an adjective, followed by the feminine 
and plural markers. (The case is rendered 
slightly more complex by the fact that the suffix 
“ell” is chosen before the feminine suffix, and 
“el” is chosen before the masculine suffix, and 
that the root “computation” takes the form 
“computationn” before a vowel-initial suffix).  
 
The signature-based model of morphology 
serves well to allow us to focus on difficult 
problems of segmentation between stems and 
affixes, and the work cited above has used an 
MDL- and signature-based model to tackle these 
problems. Nonetheless, the signature-based 
model does not appear to us, despite our efforts, 
to generally scale up easily to languages with 
richer morphological systems. We return to 
some of the reasons shortly; we turn first to an 
alternative. 

3 Nondeterministic finite-state 
automata 

We will first describe the kind of finite-state 
automata we are seeking, and then turn to how 
to learn them. 

3.1 Convergence and divergence 
At least since the work of Koskenniemi 1983 
(see Jurafsky and Martin 2003, for example, for 

                                                                                
ing, ed, s} and the second would extract the suffixes 
{ing, ed, s}, and neither iteration would capture the 
generalization that the suffixes {ing, ed, s} occur on 
an inner layer, and while a choice of { je, Ø } occurs 
on an outer layer. 



an overview), most computational work on 
morphology has adopted the nondeterministic 
finite-state automaton or transducer as the 
formal model of choice, and some of the work 
on unsupervised learning recently has followed 
these lines as well (such as Altun and M. 
Johnson 2001,  and H. Johnson and Martin 
2003). Such a model does not appear to have the 
limitations alluded to above when it encounters 
languages with richer morphologies (i.e., more 
morphemes per word); a finite-state device 
could naturally contain a subgraph that could 
handle the form in (2). Viewing the problem not 
as transduction but as generation, we could 
easily imagine a subgraph as in (3), in which 
each transition is associated with the emission of 
a morpheme: 
 
 
(3) 

 
 
Finite state automata  are often described   in a 
fashion that associates emission (or acceptance) 
of a string with an arc that joins two states, as in 
(3), but one can also of course develop 
formalisms of finite state automata that associate 
emission (or acceptance) of a string with a 
particular state rather than state-transition. These 
approaches are equivalent from the point of 
view of the languages that they generate. 
However, they are by no means equivalent as 
natural structures to use as the basis for an MDL 
analysis,2 and it turns out that neither is quite 
right for this purpose; the best model draws on 
aspects of both, for the following reasons.  
 
a. Convergence: In the arcs of an arc-emitting 
automaton, there is no reason to expect the arcs 
that leave a given state S to converge on a 
common state T. In natural language, however, 
such convergence is the normal case. This is 
especially true in the case of inflectional 

                                                      
2 For essentially this reason: the natural length of the 
morphology is the sum of the lengths of the 
component pieces, and multiplying states or arcs 
unnecessarily has a very significant impact on the 
calculated length of the morphology. 

morphology, which is the morphological 
marking of such characteristics as subject 
agreement and tense marking on verbs; or 
gender, number, and case marking on adjectives 
and nouns. 
 
(4) example: Spanish adjectives and verbs. 
 
a. Spanish adjectives 

 
b. Spanish verbs 

 
 
 
This behavior is easy to model with a state-
emission automaton, in which each state is 
associated with a set of morphemes {mi} and 
probabilities {pi}, and passage through the state 
is associated with the emission of one of these 
morphemes mi with probability pi. 
 
b. Divergence: While convergence is the most 
common structure in the graph of a morphology, 
it is not always found, and its alternative, 
divergence, is typically associated with a 
morpheme that marks a change of part of 
speech. (We speak of a state being divergent if 
its out-arcs end at two or more distinct states, 
and convergent otherwise; divergence can be 
quantified in natural ways.)  A typical example 
is given in (5), which extends the example in 
(4). The suffix –id- is a participial suffix which 
in effect shifts, or converts, a verb stem to an 
adjective, thus joining the two graphs in (4). The 
suffix –id- is responsible for the generation of 



words such as com-id-o, com-id-o-s, com-id-a-s, 
etc. 
 
(5)  

 
 
 
Divergence is easy to express with an arc-
emission automaton; as we noted above, a 
random arc-emission automaton will be filled 
with states whose out-arcs are divergent, i.e., 
point to distinct states.  
 
What we need is a model which allows for both 
convergence and divergence: divergence 
because the facts demand this possibility, and 
convergence because we wish to assign a 
smaller description length to morphologies 
composed primarily of converging states.  
 
Our solution to this eat-your-cake-and-have-it-
too problem is an automaton composed in the 
following way. Each state Si consists of three 
components: (1) Si contains a list of one  or 
more morphemes – or rather, of pointers to 
morphemes in a collection of morphemes (i.e., 
strings from an alphabet A); we refer to this list 
as the state’s morpheme-choices (and this is 
typically two or more, in fact); (2) each 
morpheme-choice may (but need not) be 
explicitly associated with a unique arc to another 
state, which we may call a morpheme-specific 
arc; (3) a state may (but need not) be associated 
with a common arc to another state; this common 
arc is interpreted as being associated to all 
morpheme-choices that are not explicitly 
marked as associated with an arc. (Only 
accepting states may have morpheme-choices 
that are associated with neither a common arc 
nor a morpheme-specific arc.) It is in effect the 
default transition associated with each 

morpheme choice that does not have an arc 
explicitly associated with it. A simple example 
from English will clarify these notions. 
 
English morphology includes a state composed 
of count noun stems in English, such as book, 
car, chair, etc, which point to a state associated 
with the morphemes s (plural) and Ø (singular), 
as in (6). English morphology also includes a 
state composed of weak verb stems, such as 
laugh or walk, which points to a state whose 
morpheme choices are Ø, ed, ing, and s, the four 
regular verbal suffixes.  
 
(6) 
 

 
 
We adopt the convention that block arrows, as in 
(6), represent common arcs, associated with all 
morpheme choices to their left which have no 
morpheme-specific arcs.  There are no 
morpheme-specific arcs indicated in (6). 
 
In (7), however, we indicate the fact that in 
English morphology, there is a second verbal 
suffix –ing which changes a verb into a noun, as 
we see in words like findings, 
misunderstandings, shootings, etc. This 
derivation suffix has a morpheme-specific arc 
associated with it, as indicated in (7). 
(7) 

 
 
We call the states in our model morpheme-
choice states, and each can be thought of, if you 



please, as having an internal architecture made 
up from a familiar arc-emission FSA, as in (8), 
but we will calculate the description length of 
the state in a fashion that counts the common arc 
only once, and hence gives priority to analyses 
in which arcs leaving one state all converge to a 
single (other) state. 
 
(8) 
 

 
 
An MDL model for a morpheme-choice 
morphology computes its length as follows. Let 
us use the convention that #(X) refers to the 
count of a set X; X might be the set of words, 
for example. This convention allows us to 
consider either type count or token count, as 
long as we are consistent; this choice will give 
rise to two somewhat different models. For 
purposes of expositional simplicity, we make the 
assumption here that all words are 
deterministically parsed by the morphology. 
 
Each word in the corpus is associated with a 
(unique) path from the initial node of the 
morphology to the (unique) final accepting state. 
Each state S keeps track of how many words’ 
paths pass through it ( = #(S) ) and, for each 
morpheme choice mi associated with it, how 
many times the choice mi, is taken at that state, 
which is #(mi, S).  Each common arc ai,j and 
each morpheme-specific arc bi,j passing from 
State i to State j keeps track of how many paths 
pass through them: #(bi,j at State k) is equal to 
#(mi at State k), since a morpheme-choice may 
have no more than one morpheme-specific arc. 
With a common arc ai,j, #( ai,j ) is equal to #( Si) 
less the count of all of the morpheme-specific 
arcs of State Si. 
 

The probability assigned to a word (which is to 
say, to the path its analysis takes through the 
morphology) is the product of the choices made 
at each state, so the probability of choosing an 

arc ai,j is 
∑

k
ki

ji

a
a

)(#
)(#

,

, .  

The information content of the morphology is 
the sum of the information content of its 
component states. This consists of three 
subparts: a list of pointers to morphemes (these 
are the morpheme choices), usually but not 
always a common arc, and possibly a set of 
morpheme-specific arcs.  
 
The state’s morpheme choices are pointers to 
morphemes on a list; this decision allows the 
morphology to be simpler if it permits the same 
morpheme to appear in several different 
locations (states) in the morphology. A 
particular morpheme m which is associated with 
the ith morpheme choice of a state Sj has a count 
#( m )associated with it that is equal to the sum 
of the counts of all of the morpheme choices that 
point to it. That is, #(m) = 

∑∑
S i

ii mmSm ),(),(# δ where δ(mi, mj) = 1 iff 

i = j. If T = ∑
i

im )(# , then the information 

content of mi = 
)(#

log
im

T
, and the length of a 

state’s morpheme choices is a sum of the 
information content for each morpheme choice.  
 
The length of an arc (either common or 
morpheme-specific) to a state Sj is based on how 
many word-paths pass through that state, which 
we have called #(Sj). If we Z = ∑

j

Sj)(# , then 

the length (information content) of an arc ai,j is 

equal to log 
)(# , jia

Z
.  

  
 

4 Bootstrapping the search for a 
corpus’s morphology using 
successor frequency and Patricia 
tries 



 An MDL-based system for unsupervised 
learning of morphology is characterized by an 
explicit objective function, a bootstrap heuristic 
for finding a rough and ready initial 
morphological analysis, and a set of incremental 
heuristics which suggest improvements to the 
morphology subject to testing by the objective 
function. The bootstrap heuristic is important 
simply because the space of possible 
morphological analyses of a set of data is 
astronomical, and incremental searches for 
improvements in a morphology in practice 
require that the currently hypothesized 
morphology not be wildly different from the 
correct analysis. The incremental heuristics need 
not be intelligent; their responsibility is to 
suggest changes to the morphology (add a 
suffix, change the location of the stem/suffix 
cut, etc.) which can then be evaluated by the 
MDL-based objective function. In the limit, 
these modification heuristics could be very 
dumb, but there is no particular benefit from 
taking that strategy. 
 
One of the most effective bootstrapping 
heuristics for establishing an initial morphology 
depends on an insight of Zellig Harris (1955, 
1967). Using the term “prefix” in the computer 
science sense – that is, a string P is a prefix of a 
string S iff S=PX for some (possibly null) string 
X – then Harris proposed a “successor 
frequency” function on all prefixes P in a 
corpus, defining the successor frequency S(P) as 
the number of distinct letters li such that the 
concatenation Pli is a prefix of some word in the 
corpus (we assume by convention that each 
word is terminated by a designated symbol such 
as ‘#’). Thus the successor frequency of a prefix 
is the number of alternative ways that the prefix 
can be continued, given the words of the corpus. 
One can similarly define the “predecessor 
frequency” for all suffixes of words in the 
corpus. 
 
Harris believed that some simple function based 
on successor and predecessor frequency would 
allow for automatic detection of morpheme 
boundaries; Hafer and Weiss (1974) showed that 
this belief was incorrect. Goldsmith (2003) 
shows how successor frequency can be 
combined with a signature-based model to 
produce a useful bootstrap heuristic, roughly as 
follows. Find the right-most peak of successor 

frequency for all words in the corpus, and divide 
each word wi with such a peak into two pieces, 
Li and Ri. Without giving any particular 
significance to the name, we may refer to L as 
the stem, and R as the suffix.  A given stem Li 
may be the first piece in the analysis of several 
words {wj}; in such a case, associate all of the 
suffix Rj’s with that stem Li, and we may refer 
to that set of Rj as Li’s signature: it is the set of 
distinct ways that Li can be completed, and is an 
initial guess as to Li’s true possible suffixes.  
 
We then count the number of stems a given 
signature is associated with, and drop any 
signatures which occur only once. We accept 
only those divisions of words into a piece L and 
a piece R which conform to a signature that 
satisfies this test. This heuristic thus consists of 
a successor frequency peak test and a signature 
validation test. 
 
The natural way to store words computationally 
in order to easily compute successor frequency 
is as a Patricia trie (Morrison 1968), a 
compressed trie in which all nodes in the trie 
have at least two daughter nodes. Thus a Patricia 
trie storing the strings aabbb, aaccc, and bbb 
has a structure as in (9). The successor 
frequency of a prefix represented as the key at a 
node is the number of daughter nodes, and any 
other prefix has a successor frequency of 1; 
predecessor frequency is similarly captured by 
the number of daughter nodes on a Patricia trie 
built of the mirror-image of all words. We will 
henceforth say trie when we mean Patricia trie. 

 
(9)  

 
        
 



Under certain ideal conditions, a trie 
representation of data might bring one close to a 
good morphological analysis. For example, 
given the data D = { walk, walks, walked, 
walking, laugh, laughs, laughing, laughed }, a 
trie will be constructed in which a node with key 
walk and a node with key laugh will be 
daughters to the root, and from each will depend 
nodes for Ø, ed, ing, and s. It is well-known 
(Hopcroft and Ullman 1979) that a minimal FSA 
can be found which generates the same language 
as a trie, viewed as an FSA, essentially by 
collapsing the terminal nodes (which are the 
accepting states), and then successively 
collapsing subgraphs low in the trie which 
generate identical sets of strings. For example, 
the trie which generates D above will contain 
two subgraphs which generate { Ø, ed, ing, s }, 
and they can be collapsed, to create a minimal 
FSA as in (9). 
 
(9)     

 
 
Altun and M. Johnson 2001 and H. Johnson and 
Martin 2003 exploit this observation to build a 
minimal FSA from a trie as a morphological 
model.3  

                                                      
3 Relatively few details are offered in Altun and 
Johnson 2001. They suggest that their model is based 
on MDL, but it appears to us that their calculation of 
the length of the model is limited to counting the 
number of nodes, placing more computational weight 
on deciding whether two nodes should be collapsed 
based on the impact of this collapse on the total 
probability assigned to the corpus. They suggest that 
during each update of the FSA, they calculate the 
change in the description length for each of the 
approximately n2 possible state collapses, where n is 
the number of states, and they report that their system 
learns the correct morphology for Turkish when 
presented with 240,000 words, but do not give 
precision or recall figures.  

5 Motivation: to better obtain 
layered morphology; inflectional 
and derivational morphology 

 One of the primary reasons for making the 
switch to an FSA as the basic model for a 
morphology is that it is superior as a model for 
the layered characteristics of natural language 
morphology. What do we mean by layered 
characteristics? This is a notion most easily 
explained by example, and we have seen several 
so far: cases where a subpart (typically a large 
subpart) of the morphology is best viewed as a 
sequence of states in a state-emission FSA: in 
short, where the composition of a word consists 
of walking through a fixed set of states, and 
choosing one morpheme as we pass through 
each state.  
 
There appears to be a natural linguistic 
interpretation of this structure as well, which we 
are exploring. The basic idea is this: natural 
language inflectional morphology tends to 
consist of a sequence of largely non-overlapping 
realizations of morphosyntactic information, and 
this is best analyzed as a sequence of convergent 
morpheme states in an NFSA. We saw a couple 
of examples of this earlier, in examples (1) 
through (5); good examples of it are the suffixal 
options in French and Spanish adjectives(3 and 
4a), and the prefix options in the Swahili verb in 
(1).  
 
Derivational morphology, by contrast, is 
divergent, in the sense that a derivational affix 
typically shifts the traversal through the FSA 
from one sequence to another. Each sequence is 
typically devoted to the morphological 
realization of one lexical class, and much 
(though not all) derivational morphology 
involves a morpheme whose function is to 
change a word from one category to another (or 
in the present metaphor, to shift the path that we 
take in the FSA from one convergent sequence 
to another).   

6 Our algorithm 
In developing a morpheme-choice based 
morphology from a trie, our first goal was to 
ensure that we could incorporate as much of the 
intelligence of the signature-based MDL 
analysis as possible. Our procedure is as 
follows.  



 
Given a trie of the vocabulary, consider each 
node in the trie as a possible morpheme break 
(as noted above, each node in the trie is a case 
where the successor frequency is greater than or 
equal to 2), starting with the 5th letter of the 
word.  
 
At each such point, consider the set of sequences 
of letters that follow that point; this corresponds 
directly to the signature. For example, if the 
words book and books are in the corpus, then a 
node in the trie will occur that is pointed to by 
the string book and which encodes the sequence 
of letters Ø and s. We keep track of these 
signatures in a separate data structure, and 
evaluate them as follows.  
 
The credibility of a signature is based on three 
characteristics: the number of stems that precede 
it, and the number and length of the individual 
suffixes in the signature. Suffixes of length 1 are 
the least reliable, and signatures made up of 
suffixes that are all of length 0 or 1 are highly 
unreliable. Nonetheless they may be real and 
valid (indeed, the signature Ø.s is valid in 
English, French, and Spanish; the signature Ø.e 
is valid in French, and the signature a.o is valid 
in Spanish.). We accept signatures with such 
short suffixes only if they are supported by at 
least 25 stems, and signatures with longer 
suffixes if they are supported by at least 5 stems. 
We cut words into morphemes on the basis of 
the signatures we have identified in this way. 
Thus, in a corpus of French with the adjectives 
petit, petits, petite, and petites, we will make 
cuts after petit, and also after e, and so on.4 
 
We build a finite state automaton using 
morpheme-choice states, as we have described 

                                                      
4 This differs from the algorithm in Goldsmith 2004, 
which does not make a cut unless the successor 
frequency function is unambiguous about the 
location of the morpheme break, i.e., a break is made 
at location i only if the successor frequency function 
at position i-1, i, and i+1 is (resp.) 1, N, 1 for some 
N>1. This conservative cutting inhibits it from 
finding word-internal suffixes of length 1. It was 
motivated by a wish not to place a morpheme 
boundary both before and after the i in words such as 
construction, which typically occur in corpora both 
with construct, constructs,  and constructed, on the 
one hand, and with constructing, on the other. 

above, on the basis of these morpheme cuts, and 
minimize the number of states in the following 
way. All accepting states are identified as a 
single state, and then we successively collapse 
all states whose set of morpheme-choices (its 
“signature”, in effect) are identical and which 
point to the same following states.  
 

7 Collapsing states and suffix-
sublanguages; poor results with 
probability of corpus. 

 
We have been interested for quite some time in 
morphological analysis of French and Spanish. 
The languages are similar in a number of 
respects. Both have systems of adjectives in 
which an adjectival stem is followed by either a 
masculine or a feminine gender marker, 
followed by either a singular or a plural number 
marker. See (10), where the tables should be 
read as menu-style FSAs : construct an adjective 
by choosing one morpheme from each column.  
 
(10).   a. French  adjectives 
  
Stem Gender Number 
petit “small” Ø (masculine) Ø (singular) 
grand “large” e (feminine) s (plural) 
 
Example: petit (masc. sg.), petite (fem. sg.), 
petits (masc. pl.), petites (fem. pl.) 
 
 b. Spanish  adjectives 
  
Stem Gender Number 
pequeñ 
“small” 

o (masculine) Ø (singular) 

lind “pretty” a (feminine) s (plural) 
 
Example: lindo (masc. sg.), linda(fem. sg.), 
lindos (masc. pl.), lindas (fem. pl.) 
 
In our earlier signature-based analysis, these 
forms have been analyzed as displaying four 
suffixes: French Ø, e, s, and es; Spanish o, a, os, 
and as. This is not linguistically correct, but 
follows from some not unreasonable 
assumptions that are built into the design.5  

                                                      
5 Because of the strategy described in footnote 4, 
splitting adjectives into stem plus suffix was 



In our present FSA-based morphology, 
adjectives with all four forms in the corpus 
emerge from the collapsing of the trie into a 
minimal FSA as in (11), which is not what we 
would hope for (what we hope for  would be the 
structure in (4a)). When, as in (11a), a state S 
points to both a daughter state and the 
daughter’s daughter(s), and is hence divergent, 
then we test the subgraph, to see whether there 
is an alternative restructuring in which S can be 
rewritten as a convergent state. We do this by 
removing the morpheme-specific arcs to the 
granddaughter node, and see what strings now 
fail to be generated, and check to see if this set 
of strings can be generated by adding one or 
more morphemes to the state on the assumption 
that the state becomes a convergent state. This 
will typically decrease the description length of 
the grammar, since we will be certain to reduce 
the number of pointers in the grammar in so 
doing. This incremental heuristic offers us the 
alternative, and preferred (because shorter) 
structure in (11b). 
 
(11) 
a. before 

Ø
e
s

Ø
s

petit
...

 
 
b. after 
 

Ø
e

Ø
s

petit
...  

 
 
 
We in effect identify sequences of converging 
states in our FSA as islands of reliability.  
                                                                                
discovered initially when only two suffixes occurred 
on a single stem (which might be any two of the four 
combinations, including Spanish “as” or French “es” 
as a single item). These four possibilities, having 
been “discovered”, would then be found in groupings 
of 3 and 4 on other adjectival stems. From some 
practical points of view, such as stemming for 
document retrieval, this analysis is perfectly 
acceptable – but it is not linguistically correct. 

 
In work in progress, we are attempting to use 
these convergent sequences of states in order to 
learn allomorphy, which is rampant in French 
morphology. Adjectival stems that end in the 
morpheme –al- do not appear with the 
masculine suffix Ø and the plural suffix –s-; 
instead, the combination –aux is found (e.g., 
nationaux ‘national, masc. pl.’). This allows us 
to arrive at an “imperfect” submorphology of 
this form:  
(12) 
 

l
le
ux

Ø
s

nationa
...

 
Using a similar strategy as that which drove the 
restructuring from (11a) to (11b), we are 
working on a method to  reduce (12) to (11b) 
followed by a rewrite of al-s-# to aux. This 
method depends on the reliability in general of 
layered, convergent subparts of the morphology. 

References  
Altun, Y. and M. Johnson (2001). Inducing SFA 
with epsilon-transitions using Minimum 
Description Length. Finite State Methods in 
Natural Language Processing 2001 ESSLLI 
Workshop, Helsinki. 
  
Goldsmith, J. (2001). “Unsupervised Learning 
of the Morphology of a Natural Langauge.” 
Computational Linguistics 27(2): 153-198. 
  
Goldsmith, J. a. M. B. (2002). Using 
eigenvectors of the bigram graph to infer 
grammatical features and categories.  
Proceedings of the Morphology/Phonology 
Learning Workshop of ACL-02., Philadelphia 
PA, Association for Computational Linguistics. 
  
Goldsmith, J. (2004). “An algorithm for the 
unsupervised learning of morphology.” 
Manuscript. 
  
Hafer, M. A. and S. F. Weiss (1974). “Word 
segmentation by letter successor varieties.” 
Information Storage and Retrieval 10: 371-385. 



  
Harris, Z. (1955). “From Phoneme to 
Morpheme.” Language 31: 190-222. 
  
Harris, Z. (1967). Morpheme boundaries within 
words: report on a computer test. 
Transformations and Discourse Analysis Papers 
73. Reprinted in Harris 1970. 
Harris, Zellig. 1970. Papers in Structural and 
Transformational Linguistics. Dordrecht 
Holland: D. Reidel. 
  
Hopcroft, J. E. and J. D. Ullman (1979). 
Introduction to automata theory, languages, and 
computation. Reading, Mass., Addison-Wesley. 
  
Johnson, H. and J. Martin (2003). Unsupervised 
learning of morphology for English and 
Inuktitut. Human Language Technology 
Conference, Edmonton. 
  
Jurafsky, D. and J. Martin (2000). Speech and 
Language Processing. Upper Saddle River, NJ, 
Prentice Hall. 
  
Koskenniemi, K. (1983). Two-level morphology: 
a general computational model for word-form 
recognition and production. Helsinki, 
Department of General Linguistics, University 
of Helsinki. 
  
Morrison, D. (1967). “PATRICIA--Practical 
Algorithm To Retrieve Information Coded in 
Alphanumeric.” Journal of the ACM (JACM) 
15(4): 514-534. 
  
 

 


