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Abstract

The method of independent bounded differences (McDiarmid, 1989) gives large-
deviation concentration bounds for multivariate functions in terms of the maximum
effect that changing one coordinate of the input can have on the output. This method
has been widely used in combinatorial applications, and in learning theory. In some
recent applications to the theory of algorithmic stability (Kutin and Niyogi, 2002), we
need to consider the case where changing one coordinate of the input usually leads to
a small change in the output, but not always.

We prove two extensions to McDiarmid’s inequality. The first applies when, for
most inputs, any small change leads to a small change in the output. The second
applies when, for a randomly selected input and a random one-coordinate change, the
change in the output is usually small.

1 Introduction

How can we bound the concentration of a random variable about its mean? The classic
large-deviation concentration inequality is due to Chernoff [6]:

Theorem 1.1 (Chernoff [6]) Let ξ1, . . . , ξm be random variables with |ξk| ≤ 1 and E(ξk) =
0 for all k. Let X = 1

m

∑m
k=1 ξk. Then, for any τ > 0,

Pr (X ≥ τ) ≤ exp

(
−τ

2m

2

)
There have been a number of generalizations of Chernoff’s inequality, such as the Hoeffding-

Azuma inequality [9, 1, 7] for martingale difference sequences. In this paper, we discuss one
corollary of Hoeffding-Azuma, McDiarmid’s method of independent bounded differences [18].
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Definition 1.2 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω. We say that X is uniformly difference-bounded by c if the following
holds: for any k, if ω, ω′ ∈ Ω differ only in the kth coordinate, then

|X(ω)−X(ω′)| ≤ c. (1)

Theorem 1.3 (McDiarmid [18]) Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk,
and let X be a random variable on Ω which is uniformly difference-bounded by λ

m
. Let

µ = E(X). Then, for any τ > 0,

Pr(X − µ ≥ τ) ≤ exp

(
−2τ 2m

λ2

)
Our main results are two extensions to McDiarmid’s Theorem, which apply when In-

equality (1) holds with high probability.

Note 1.4 We assume throughout that the probability measure on Ω is the product of the
measures on each Ωk. So choosing a point in Ω corresponds to choosing each coordinate
independently.

We use the notation
∀δω ∈ Ω, Φ(ω)

to mean “Φ(ω) holds for all but a δ fraction of Ω”, or, equivalently, Prω∈Ω(Φ(ω)) ≥ 1− δ.
We consistently use X, Y , Z for real-valued random variables on Ω (i.e., measurable

functions from Ω to R). We use ξ to denote the random variable which corresponds to
choosing an element of Ω (so ξ is the identity function on Ω).

We use ω, χ for elements of Ω, and υ, x, y for elements of some Ωk. For the most part,
other letters represent real numbers.

Remark 1.5 McDiarmid’s Theorem 1.3 implies Chernoff’s Theorem 1.1. We take Ωk =
[−1, 1] and λ = 2.

McDiarmid credits Maurey’s work [14] on functions on permutation spaces as the first
example of a result on independent bounded differences. McDiarmid gives a proof [18] of
Theorem 1.3 without explicit reference to martingales, and also a proof [19] of Theorem 1.3
and other more general results based on martingale difference sequences. We use some of
McDiarmid’s general results, and we further generalize another.

McDiarmid [19] catalogs a number of applications of the method of independent bounded
differences, including Bollobás’s concentration bounds for the chromatic number of a random
graph [3]. More recently, Theorem 1.3 has been used by learning theorists: for example,
Bousquet and Elisseeff [5] use McDiarmid’s theorem to prove that algorithmic stability gives
good concentration bounds on generalization error, Freund, et al. [8] use the theorem to prove
that the average of a collection of classifiers has good generalization error, and McAllester and
Schapire [16, 17] use the theorem to prove concentration bounds for the accuracy of Good-
Turing estimators. Theorem 1.3 has also been used [12] to prove concentration bounds for
the training error rate of weak learning algorithms.
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However, the condition of McDiarmid’s Theorem, that Inequality (1) hold for every pair
of points ω, ω′ differing in only one coordinate, is too restrictive for some applications. In
particular, the notion of algorithmic stability used by Bousquet and Elisseeff requires that
any small change in the training set yields a small change in the final hypothesis of the
learning algorithm. Their definition of stability is too rigid to be widely applicable.

We prove two extensions of McDiarmid’s Theorem, when Inequality (1) holds most of
the time. In both cases, we also require that the function be uniformly distance-bounded by
some b, but b can be significantly larger than c. Our extensions allow for a relaxed definition
of stability [12, 13], which permits the analysis of a broader collection of learning algorithms
within the framework of stability.

Our first extension allows for the possibility of a “bad” set B of inputs for which Inequal-
ity (1) does not hold:

Definition 1.6 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be
a random variable on Ω. We say that X is strongly difference-bounded by (b, c, δ) if the
following holds: there is a “bad” subset B ⊂ Ω, where δ = Pr(ω ∈ B). If ω, ω′ ∈ Ω differ
only in the kth coordinate, and ω /∈ B, then

|X(ω)−X(ω′)| ≤ c.

Furthermore, for any ω and ω′ differing only in the kth coordinate,

|X(ω)−X(ω′)| ≤ b.

Our second extension has an even weaker hypothesis:

Definition 1.7 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω. We say that X is weakly difference-bounded by (b, c, δ) if the following
holds: for any k,

∀δ(ω, υ) ∈ Ω× Ωk, |X(ω)−X(ω′)| ≤ c,

where ω′k = υ and ω′i = ωi for i 6= k. In words, if we choose ω ∈ Ω, and υ ∈ Ωk, and we
construct ω′ by replacing the kth entry of ω with υ, then Inequality (1) holds for all but a δ
fraction of the choices. Furthermore, for any ω and ω′ differing only in the kth coordinate,

|X(ω)−X(ω′)| ≤ b.

Note 1.8 The condition of being strongly difference-bounded by (b, c, δ) can be phrased as:

∀δω ∈ Ω, ∀k, ∀υ ∈ Ωk, |X(ω)−X(ω′)| ≤ c,

where ω′ is ω with the kth coordinate replaced by υ. Therefore, strong difference-boundedness
is strictly stronger than weak difference-boundedness.

Our main result is that either of these notions of difference-boundedness implies a McDiarmid-
like concentration bound.
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Theorem 1.9 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is strongly difference-bounded by (b, λ

m
, exp(−Km)). Let µ =

E(X). If 0 < τ ≤ T1(λ,K), and m ≥M1(b, λ,K), then,

Pr(|X − µ| ≥ τ) ≤ 4 exp

(
−τ

2m

8λ2

)
.

Theorem 1.10 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is weakly difference-bounded by (b, λ

m
, exp(−Km)). Let µ =

E(X). If 0 < τ ≤ T2(b, λ,K), and m ≥M2(b, λ,K, τ), then

Pr(|X − µ| ≥ τ) ≤ 4 exp

(
− τ

2m

40λ2

)
.

Note 1.11 The values of the bounds T1,M1, T2,M2 for which we prove Theorems 1.9 and 1.10
are as follows:

T1(λ,K) = 2λ
√
K

M1(b, λ,K) = max

{
b

λ
, 3

(
6

K
+ 3

)
ln

(
6

K
+ 3

)}
T2(b, λ,K) = min

{
15λ

2
, 4λ
√
K,

λ2K

b

}
M2(b, λ,K, τ) = max

{
b

λ
, λ
√

40, 3

(
24

K
+ 3

)
ln

(
24

K
+ 3

)
,

1

τ

}
Remark 1.12 The limitation on m in Theorems 1.9 and 1.10 is straightforward: the results
hold for sufficiently large m.

In Theorem 1.10, the lower bound on m depends upon τ as well. If we had m < 1/τ ,
then we would have

4 exp

(
− τ

2m

40λ2

)
> 4 exp

(
− 1

40mλ2

)
.

For constant λ, this expression approaches 1 as m → ∞. Our interest is in concentration
bounds which get tighter, or remain constant, as m → ∞. We would only want to apply
the conclusion of Theorem 1.10 when τ = Ω(1/

√
m). Hence, requiring m ≥ 1/τ is not a

limitation.

Remark 1.13 The upper bound on τ in Theorems 1.9 and 1.10 requires some discussion.
In our applications, the uniform difference bound b generally comes from a statement of the
form

∀ω, χ ∈ Ω |X(ω)−X(χ)| ≤ b.

So, |X − µ| can never be more than b, and there is no reason to consider τ > b. In practice,
the upper bounds T1(λ,K) and T2(b, λ,K) of Note 1.11 are larger than b. So these bounds
do not limit the application of our results.
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Remark 1.14 In practice, in our applications, the standard deviation of X is roughly
C/
√
m. So our results give Chernoff-like bounds when phrased in terms of standard de-

viation.

Recently, several probabilistic notions of stability have been defined.
Strong hypothesis stability [12, 13] allows for some unlikely training sets to be bad, but

requires that, for any good training set, changing any single point leads to a small change
in the final hypothesis. Theorem 3.6, a general version of Theorem 1.9, can be used to
prove that strong hypothesis stability gives good bounds on generalization error [12, 13].
Theorem 3.6 also implies concentration bounds for the accuracy of Good-Turing estimators
[11].

Weak hypothesis stability [13] states that, if we randomly select a training set and then
change a single point, this change usually leads to a small change in the final hypothesis.
Training stability [13] is an even weaker notion of stability. Theorem 4.8, a general version of
Theorem 1.10, can be used to prove that weak hypothesis stability, or even training stability,
is also sufficient to give good bounds on generalization error [13].

In Section 2, we define more general notions of difference-boundedness. We also discuss
the martingale terminology we need to prove our main results, as well as some lemmas we
will use to manipulate the moment generating function eX . As an example of these lemmas,
we prove an extended version of Bernstein’s Theorem in Section 2.4.

We prove Theorem 1.9 in Section 3; our proof closely follows a proof of Theorem 3.2 by
McDiarmid [19], and uses McDiarmid’s Theorem 3.1. We prove Theorem 1.10 in Section 4.
In both cases, we state and prove more general versions of the results.

Theorems 1.9 and 1.10 work well in applications to algorithmic stability, but do not apply
in some other cases; in particular, when λ = 0, Theorems 1.9 and 1.10 are vacuous. We give
straightforward näıve concentration bounds for the case λ = 0 in Section 5.

We conclude with some open questions in Section 6.

2 Preliminaries

2.1 Notions of difference-boundedness

In Section 1, we gave several definitions of difference-boundedness. We now extend those
definitions, allowing the parameters to vary with k. This will enable us to state and prove
our extensions to McDiarmid’s inequality in full generality.

Definition 2.1 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω. We say that X is uniformly difference-bounded by {ck} if the following
holds: for any k, if ω, ω′ ∈ Ω differ only in the kth coordinate, then

|X(ω)−X(ω′)| ≤ ck.

Definition 2.2 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω. We say that X is strongly difference-bounded by ({bk}, {ck}, δ) if the
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following holds: there is a “bad” subset B ⊂ Ω, where δ = Pr(ω ∈ B). If ω, ω′ ∈ Ω differ
only in the kth coordinate, and ω /∈ B, then

|X(ω)−X(ω′)| ≤ ck.

Furthermore, for any ω and ω′ differing only in the kth coordinate,

|X(ω)−X(ω′)| ≤ bk.

Definition 2.3 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω. We say that X is weakly difference-bounded by ({bk}, {ck}, {δk}) if
the following holds: for any k,

∀δ(ω, υ) ∈ Ω× Ωk, |X(ω)−X(ω′)| ≤ ck,

where ω′k = υ and ω′i = ωi for i 6= k. In words, if we choose ω ∈ Ω, and υ ∈ Ωk, and we
construct ω′ by replacing the kth entry of ω with υ, then the inequality holds for all but a δ
fraction of the choices. Furthermore, for any ω and ω′ differing only in the kth coordinate,

|X(ω)−X(ω′)| ≤ bk.

2.2 Martingales

We begin with some general definitions for probability spaces; we follow the notation of
McDiarmid [19].

Let Ω be a probability space. A σ-field on Ω is a collection F of subsets of Ω which
contains ∅ and which is closed under complementation and countable union (and, hence,
countable intersection). Given any such F , we can partition Ω into disjoint blocks , such that
F is the collection of unions of blocks.

An F-measurable function on Ω is one which is constant on each block of F . Given a
random variable X on Ω, we can construct several natural F -measurable functions:

• E(X | F): the value on each block is the average of X

• sup(X | F): the value on each block is the supremum of X.

• ran(X | F) = sup(X | F) + sup(−X | F), the range of X.

• Var(X | F) = E(X2 | F)− E(X | F)2.

A filter is a nested sequence of σ-fields (∅,Ω) = F0 ⊆ F1 ⊆ · · · . We will be interested
in finite filters, with some maximal Fm. A martingale is a sequence of random variables
X0, . . . , Xm for which Xk = E(Xk+1 | Fk) for every k. Note that Xk is Fk-measurable. The
martingale difference sequence Y1, . . . , Ym is given by Yk = Xk−Xk−1; then E(Yk | Fk−1) = 0
for all k.

Note 2.4 Given any Fm-measurable random variable X, the sequence Xk = E(X | Fk) is
a martingale; Xm = X, and X0 = E(X). We have Yk = E(X | Fk)− E(X | Fk−1).
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Note 2.5 Unless otherwise stated, we assume that Ω =
∏m

k=1 Ωk. We let Fk be the σ-field
whose blocks are of the form

{ω1} × {ω2} × · · · × {ωk} × Ωk+1 × · · · × Ωm.

A block in Fk is determined by the first k coordinates, and a function on Ω is Fk-measurable
if and only if it depends only on the first k coordinates. The filter corresponds to revealing
the coordinates one at a time.

Given a finite filter (∅,Ω) = F0 ⊆ F1 ⊆ · · · ⊆ Fm, and an Fm-measurable random
variable X, define the martingale {Xk} and the martingale difference sequence {Yk} as in
Note 2.4. We now define the following Fk−1-measurable functions:

rank = ran(Yk | Fk−1) = ran(Xk | Fk−1)

Vark = Var(Yk | Fk−1) = Var(Xk | Fk−1)

dev+
k = sup(Yk | Fk−1)

pk,d = Pr(Yk > d | Fk−1)

Note that pk,d depends on an additional parameter d.
We now let max dev+ denote the maximum of sup(dev+

k ) over all k. We also define the
following random variables:

• The sum of squared conditional ranges R2 =
∑m

k=1 ran2
k.

• The sum of conditional variances V =
∑m

k=1 Vark.

• Pd =
∑m

k=1 pk,d.

Note 2.6 Suppose we are in the setting of Note 2.5: Our probability space is a product
Ω =

∏m
k=1 Ωk, and we are given a random variable X on Ω. We define {Xk} to be the

martingale which corresponds to revealing one coordinate at a time. The definitions above
can now be phrased as follows: fix some k, and any ω1, . . . , ωk−1 with ωi ∈ Ωi. Let ξi be
the random variable corresponding to choosing from Ωi, and write ξ = (ξ1, . . . , ξm). Let Γ
denote the event that ξi = ωi for 1 ≤ i ≤ k − 1. We define φ : Ωk → R by

φ(x) = E(X(ξ) | Γ, ξk = x)− E(X(ξ) | Γ).

We can now define rank = ran(φ), Vark = Var(φ), dev+
k = sup(φ), and pk,d = Pr(φ > d).

We define max dev+, R2, V , and Pd as above. In this case, we call R2 the sum of squared
ranges , and V the sum of variances .

2.3 The moment generating function

We now state some lemmas we will need to manipulate the moment generating function eX

of a random variable X.
The first lemma is due to Steiger [20], though our notation follows that of McDiarmid

[19, Lemma 2.8].
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Lemma 2.7 (Steiger [20]) Let

g(z) =
1

2
+
z

3!
+
z2

4!
+ · · ·

=
ez − 1− z

z2
if z 6= 0.

Then the function g is increasing. If X is a random variable satisfying E(X) = 0 and X ≤ d,
then

E(eX) ≤ exp(g(d) Var(X)).

We will need a slight generalization of this result:

Lemma 2.8 Let g(z) be the function of Lemma 2.7.

1. The function g is increasing.

2. Let X be a random variable satisfying E(X) = 0 and X ≤ D. For any d < D, if
δ = Pr(X > d), then

E(eX) ≤ exp(g(d) Var(X) + δeD).

Proof: For completeness, we begin with a proof of Part 1.
Proof of Part 1: For z 6= 0, we have

g′(z) =
(z − 2)ez + z + 2

z3
.

To prove g(z) is increasing, it suffices to prove that g′(z) > 0 for all z 6= 0. Let f(z) =
z3g′(z) = (z−2)ez + z+ 2; we will show that f(z) > 0 when z > 0 and f(z) < 0 when z < 0.

First, we note that f(0) = 0. Next, we observe that, for any z,

f ′(z) = (z − 1)ez + 1 ≥ (z − 1)(z + 1) + 1 = z2 ≥ 0,

with equality only if z = 0. We conclude that f(z) is increasing, so f(z) > 0 for z > 0 and
f(z) < 0 for z < 0. By the above reasoning, g(z) is increasing. �

Proof of Part 2: For any z, ez = 1 + z + z2g(z). So,

E(eX) = 1 + E(X) + E(X2g(d)) + E(X2(g(X)− g(d)))

= 1 + g(d) Var(X) + E(X2(g(X)− g(d))).

Let Y = X2(g(X)−g(d)). By Lemma 2.7, g(X) is increasing, so, when X ≤ d, Y ≤ 0. Also,
since g(d) > 0, we always have

Y ≤ D2(g(D)− g(d)) ≤ D2g(D) ≤ eD.

So, E(Y ) ≤ δeD. Hence,

E(eX) ≤ 1 + g(d) Var(X) + δeD ≤ exp(g(d) Var(X) + δeD).

�
This concludes the lemma. �
As an example of our technique, we will use Lemma 2.8 to prove an extended version of

Bernstein’s Theorem in Section 2.4.
The next lemma, due to McDiarmid [19], is based on Lemma 3.4 of Kahn [10].
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Lemma 2.9 (McDiarmid [19, Lemma 3.16]) Let F0 ⊆ F1 ⊆ · · · ⊆ Fm be a filter, and
let Y1, . . . , Ym be a corresponding martingale difference sequence, where each Yk is bounded
above. Let the random variable Z be the indicator of some event. Then, for any h,

E
(
Zeh

∑
k Yk | F0

)
≤ sup

(∏
k

E(ehYk | Fk−1) | F0

)
.

Finally, we use a technical lemma of McDiarmid [19]:

Lemma 2.10 (McDiarmid [19, Lemma 2.4]) For all z ≥ 0,

(1 + z) ln(1 + z)− z ≥ 3z2

6 + 2z
.

2.4 Bernstein’s Theorem

Bernstein’s Theorem is a Chernoff-like large-deviation concentration inequality. McDiarmid
[19] gives a proof of Bernstein’s Theorem using Lemma 2.7.

In this section, we state and prove Theorem 2.12, an extension to Bernstein’s Theo-
rem. We use the same approach McDiarmid uses to prove Bernstein’s Theorem, but we use
Lemma 2.8 in place of Lemma 2.7.

The proof of Theorem 2.12 illustrates the power of Lemma 2.8. It also illustrates the
primary technique of Section 4: our proof of Theorem 1.10 follows the same lines as McDi-
armid’s proof of Theorem 1.3, except that we use Lemma 2.8 in place of Lemma 2.7.

We begin with a statement of Bernstein’s Theorem (see, for example, Bennett [2]):

Theorem 2.11 (Bernstein) Let ξ1, . . . , ξm be independent random variables, with ξk −
E(ξk) ≤ d for all k. Let X =

∑m
k=1 ξk, and let V = Var(X) =

∑m
k=1 Var(ξk).

Let µ = E(X). For any τ ≥ 0,

Pr(X − µ ≥ τ) ≤ exp

(
−V
d2

((1 + ε) ln(1 + ε)− ε)
)

(2)

≤ exp

(
−τ 2

2V
(
1 + ε

3

)) , (3)

where ε = dτ/V .

In many applications, the error term ε in Inequalities (2) and (3) is negligible. For
example, if each ξi is chosen uniformly from {−1, 1}, then d = 1 and V = m, so for τ = o(m)
we get

Pr(X − µ ≥ τ) ≤ exp

(
−τ 2

2m
(1 + o(1))

)
,

which is log-asymptotic to the bound obtained from Chernoff’s Theorem 1.1.
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However, suppose we are instead given that ξk − E(ξk) ≤ d with high probability, and
ξk − E(ξk) ≤ D always. A bound of the form

Pr(X − µ ≥ τ) ≤ exp

(
−τ 2

2V
(1 + o(1))

)
would still be useful (for example, if |ξk| ≤ 1 with high probability, V will still be roughly
m). However, the error term Dτ/V may no longer be negligible. We would like to prove a
version of Theorem 2.11 which applies in this context and where we still have ε = dτ/V .

McDiarmid [19] gives a proof of Bernstein’s Theorem using Lemmas 2.7 and 2.10. We
use this same argument, but we use Lemma 2.8 in place of Lemma 2.7.

Theorem 2.12 Let ξ1, . . . , ξm be independent random variables. Suppose that, for all k,
Pr(ξk − E(ξk) > d) ≤ δ and ξk − E(ξk) ≤ D. Let X =

∑m
k=1 ξk, and let V = Var(X) =∑m

k=1 Var(ξk).
Let µ = E(X). For any τ ≥ 0,

Pr(X − µ ≥ τ) ≤ exp

(
−V
d2

((1 + ε) ln(1 + ε)− ε) +mδ(1 + ε)D/d
)

(4)

≤ exp

(
−τ 2

2V
(
1 + ε

3

) +mδ(1 + ε)D/d

)
, (5)

where ε = dτ/V .

Proof: For any h > 0, by Lemma 2.8,

E
(
eh(X−µ)

)
=

m∏
k=1

E
(
eh(ξk−E(ξk))

)
≤

m∏
k=1

exp
(
g(hd) Var(hξk) + δehD

)
= exp

(
g(hd)h2V +mδehD

)
.

So, for any τ ≥ 0, by Markov’s inequality,

Pr(X − µ ≥ τ) = Pr
(
eh(X−µ) ≥ ehτ

)
≤ e−hτE

(
eh(X−µ)

)
≤ exp

(
−hτ + g(hd)h2V +mδehD

)
.

The expression −hτ + g(hd)h2V is minimized at h = 1
d

ln(1 + ε), where ε = dτ/V . This
value of h gives us Inequality (4).

Inequality (5) now follows from Lemma 2.10. �
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3 Strongly difference-bounded functions

In this section, we prove Theorem 1.9. We follow the same general argument McDiarmid
uses to prove Theorem 1.3. Both his proof and ours use the following result about sums of
squared ranges [19, Theorem 3.7]:

Theorem 3.1 (McDiarmid) Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and
let X be a random variable on Ω. Let r̂2 denote the maximum sum of squared ranges sup(R2).
Let µ = E(X). Then, for any τ ≥ 0,

Pr(X − µ ≥ τ) ≤ exp(−2τ 2/r̂2).

More generally, let B be a “bad” subset of Ω such that R2(ω) ≤ r2 for each ω /∈ B. Then

Pr(X − µ ≥ τ) ≤ exp(−2τ 2/r2) + Pr(ω ∈ B).

McDiarmid [19] uses Theorem 3.1 to prove the following theorem, of which Theorem 1.3
is a special case:

Theorem 3.2 (McDiarmid [18]) Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk,
and let X be a random variable on Ω which is uniformly difference-bounded by {ck}. Let
µ = E(X). Then, for any τ > 0,

Pr(X − µ ≥ τ) ≤ exp

(
−2τ 2∑

c2
k

)
We now prove our most general form of Theorem 1.9.

Theorem 3.3 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is strongly difference-bounded by ({bk}, {ck}, δ). Let µ = E(X).
Then, for any τ > 0, and any α1, . . . , αm > 0,

Pr(|X − µ| ≥ τ) ≤ 2

(
exp

(
−τ 2

2
∑

k(ck + bkαk)2

)
+ δ

∑
k

1

αk

)
. (6)

Proof: We let ξi be the random variable corresponding to choosing from Ωi, and we
write ξ = (ξ1, . . . , ξm). Fix some k and ω− = (ω1, . . . , ωk−1) ∈

∏k−1
i=1 Ωi, and let Γ be the

event that ξi = ωi for 1 ≤ i ≤ k − 1.
We are interested in bounding ran(ω1, . . . , ωk−1). Choose some x ∈ Ωk. For any ω+ ∈∏m

i=k+1 Ωi, if (ω−, x, ω+) /∈ B, then, for every y ∈ Ωk,

|X(ω−, x, ω+)−X(ω−, y, ω+)| ≤ ck.

Otherwise, if (ω−, x, ω+) ∈ B, we still have

|X(ω−, x, ω+)−X(ω−, y, ω+)| ≤ bk

for every y ∈ Ωk.

11



So, if p = Pr(ξ ∈ B | Γ, ξk = x), then, for any y ∈ Ωk,

Eω+(|X(ω−, x, ω+)−X(ω−, y, ω+)|) ≤ (1− p)ck + pbk ≤ ck + pbk.

Hence, for any y, y′ ∈ Ωk,

Eω+(|X(ω−, y, ω+)−X(ω−, y
′, ω+|) ≤ 2(ck + pbk),

which implies that
ran(ω1, . . . , ωk−1) ≤ 2(ck + pbk).

By total probability, there is some way to choose x such that

p = Pr(ξ ∈ B | Γ, ξk = x) ≤ Pr(ξ ∈ B | Γ),

and therefore
ran(ω1, . . . , ωk−1) ≤ 2(ck + bk Pr(ξ ∈ B | Γ)).

Now, we wish to bound the probability that Pr(ξ ∈ B | Γ) is large. Let Ck be the subset
of
∏k−1

i=1 Ωi consisting of “bad starts:”

Ck = {(ω1, . . . , ωk−1)|Pr(ξ ∈ B | Γ) > αk}.

We let Bk = Ck × Ωk × · · · × Ωm be the set of all points which have a bad start; note that
Bk ⊂ Ω. We have ω = (ω1, . . . , ωm) ∈ Bk if and only if (ω1, . . . , ωk−1) ∈ Ck.

We observe that

δ = Pr(ξ ∈ B) = Pr(ξ ∈ Bk) Pr(ξ ∈ B | ξ ∈ Bk)

≥ Pr(ξ ∈ Bk) inf
(ω1,...,ωk−1)∈Ck

Pr(ξ ∈ B | Γ)

≥ Pr(ξ ∈ Bk)αk,

and hence
Pr(ξ ∈ Bk) ≤ δ/αk.

If we define B′ =
⋃
k Bk, then

Pr(ξ ∈ B′) ≤ δ
m∑
k=1

1

αk
.

Now, if ω /∈ B′, we see that

R2(ω) =
m∑
k=1

(ran(ω1, . . . , ωk−1))2

≤
m∑
k=1

(2(ck + bk Pr(X ∈ B | Γ)))2

≤ 4
m∑
k=1

(ck + bkαk)
2.

The result now follows immediately from Theorem 3.1. �

12



Corollary 3.4 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is strongly difference-bounded by (b, c, δ). Let µ = E(X). Then,
for any τ > 0, and any α > 0,

Pr(|X − µ| ≥ τ) ≤ 2

(
exp

(
−τ 2

2m(c+ bα)2

)
+
m

α
δ

)
. (7)

Proof: This is simply Theorem 3.3 with bk = b, ck = c, and αk = α. �
The next question is how best to choose the parameter αk in Inequality (6), or the

parameter α in Inequality (7). In applications to algorithmic stability [12, 13], bk = Θ(1),
ck = Θ(1/m), and δ = exp(−Ω(m)), so choosing αk = ck/bk is close to optimal:

Corollary 3.5 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is strongly difference-bounded by ({bk}, {ck}, δ). Assume bk ≥
ck > 0 for all k. Let µ = E(X). Then, for any τ > 0,

Pr(|X − µ| ≥ τ) ≤ 2

(
exp

(
−τ 2

8
∑

k c
2
k

)
+ δ

∑
k

bk
ck

)
.

Proof: Set αk = ck/bk and apply Theorem 3.3. �

Theorem 3.6 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is strongly difference-bounded by (b, c, δ). Assume b ≥ c > 0.
Let µ = E(X). Then, for any τ > 0,

Pr(|X − µ| ≥ τ) ≤ 2

(
exp

(
−τ 2

8mc2

)
+
mbδ

c

)
.

Proof: Theorem 3.6 is simply Corollary 3.4 with α = c/b. �
We are almost ready to prove Theorem 1.9; we first prove the following technical lemma.

Lemma 3.7 For any z > 0, if m ≥ 3(z + 3) ln(z + 3), then m
lnm

> z.

Proof: We first note that
d

dm

m

lnm
=

lnm− 1

ln2 m
,

so m
lnm

is increasing when m > e.
Next, we know ln(z + 3) ≥ ln ln(z + 3). Also, z > 0, so ln(z + 3) > ln 3. Hence,

m

lnm
≥ 3(z + 3) ln(z + 3)

ln 3 + ln(z + 3) + ln ln(z + 3)

>
3(z + 3) ln(z + 3)

3 ln(z + 3)
= z + 3 > z.

�
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Proof of Theorem 1.9: We use Theorem 3.6 with c = λ/m and δ = exp(−Km). For
any τ ≥ 0, we have

Pr(|X − µ| ≥ τ) ≤ 2

(
exp

(
−τ

2m

8λ2

)
+m2 b

λ
exp(−Km)

)
.

By our choice of m (see Note 1.11), and by Lemma 3.7, m
lnm

> 6
K

, so 3 lnm < K
2
m. Also,

m ≥ b
λ
. Therefore,

m2 b

λ
exp(−Km) ≤ m3 exp(−Km) = exp(−Km+ 3 lnm) ≤ exp

(
−K

2
m

)
,

which implies

Pr(|X − µ| ≥ τ) ≤ 2

(
exp

(
−τ

2m

8λ2

)
+ exp

(
−K

2
m

))
.

Finally, when τ ≤ 2λ
√
K, we have

−τ
2m

8λ2
≥ −K

2
m,

and thus

Pr(|X − µ| ≥ τ) ≤ 4 exp

(
−τ

2m

8λ2

)
.

�

4 Weakly difference-bounded functions

The proof of Theorem 1.10 is more involved than that of Theorem 1.9. We first state, and
generalize, a theorem of McDiarmid about martingales [19, Theorem 3.15].

Theorem 4.1 (McDiarmid [19]) Let X be a random variable with E(X) = µ, and let
(∅,Ω) = F0 ⊆ F1 ⊆ · · · ⊆ Fn be a filter in F . Let d = max dev+, the maximum conditional
positive deviation (and assume that d is finite). Then, for any τ ≥ 0,

Pr(X − µ ≥ τ) ≤ exp

(
−τ 2

2v̂
(
1 + dτ

3v̂

)) ,
where v̂ is the maximum sum of conditional variances (which is also assumed to be finite).
More generally, for any τ ≥ 0 and any v ≥ 0,

Pr(X − µ ≥ τ) ≤ exp

(
−τ 2

2v
(
1 + dτ

3v

))+ Pr(V (X) > v).
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Corollary 4.2 (McDiarmid [19, Theorem 3.8]) Let Ω1, . . . ,Ωm be probability spaces. Let
Ω =

∏m
k=1 Ωk, and let X be a random variable on Ω. Let d = max dev+, and let v̂ denote the

maximum sum of variances sup(V ). (Assume that both d and v̂ are finite.) Let µ = E(X).
Then, for any τ ≥ 0,

Pr(X − µ ≥ τ) ≤ exp

(
−τ 2

2v̂
(
1 + dτ

3v̂

)) .
More generally, for any τ ≥ 0 and any v ≥ 0,

Pr(X − µ ≥ τ) ≤ exp

(
−2τ 2

2v
(
1 + dτ

3v

))+ Pr(V > v).

Theorem 4.1 and Corollary 4.2 are generalizations of Bernstein’s Theorem (see Theo-
rem 2.11).

Theorem 4.1 is not quite sufficient for our needs. We need to consider the case where
each martingale difference Yk is usually bounded by d, but where max dev+ is actually a
larger value D. We prove the following generalization:

Theorem 4.3 Let X be a random variable with E(X) = µ, and let (∅,Ω) = F0 ⊆ F1 ⊆
· · · ⊆ Fn be a filter in F . Let D = max dev+, the maximum conditional positive deviation
(and assume that D is finite). Then, for any τ, d, v, p > 0,

Pr(X − µ ≥ τ) ≤ exp

(
−τ 2

2v
(
1 + dτ

3v

) + p

(
1 +

dτ

v

)D/d)
+ Pr((V > v) ∨ (Pd > p)).

Theorem 4.3 is an extension of McDiarmid’s Theorem 4.1 in the same way that Theo-
rem 2.12 is an extension of Bernstein’s Theorem 2.11. As in Section 2.4, our proof follows
the same lines as McDiarmid’s, except that we use Lemma 2.8 in place of Lemma 2.7.

Proof: Let Y1, . . . , Ym be the corresponding martingale difference sequence. Let B denote
the bad set where either V > v or Pd > p, and let Z be the indicator variable for the event
Ω \B. Note that 0 ≤ ZV ≤ v and 0 ≤ ZPd ≤ p. Let g(z) be the function of Lemma 2.7.

By Lemma 2.8, for any h > 0,

E(ehYk | Fk−1) ≤ exp(h2g(hd) Vark +pk,de
hD).

So, by Lemma 2.9,

E(Zeh(X−µ)) ≤ sup

(
Z

m∏
k=1

exp(h2g(hd) Vark +pk,de
hD)

)
= sup(Z exp(h2g(hd)V + Pde

hD))

≤ exp(h2g(hd) sup(ZV ) + sup(ZPd)e
hD)

≤ exp(h2g(hd)v + pehD).
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Hence, by Markov’s inequality,

Pr((X − µ ≥ τ) ∧ (Z = 1)) = Pr(Zeh(X−µ) ≥ ehτ )

≤ e−hτE(Zeh(X−µ))

≤ exp(−hτ + h2g(hd)v + pehD).

Let ε = dτ/v. The expression −hτ+h2g(hd)v is minimized when h = 1
d

ln(1+ε), yielding

Pr((X − µ ≥ τ) ∧ (Z = 1)) ≤ exp

(
−v
d2

((1 + ε) ln(1 + ε)− ε) + pe
D
d

log(1+ε)

)
.

The theorem now follows from Lemma 2.10. �

Corollary 4.4 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω. Let D = max dev+, and assume that D is finite. Let µ = E(X).
Then, for any τ, d, v, p > 0,

Pr(X − µ ≥ τ) ≤ exp

(
−τ 2

2v
(
1 + dτ

3v

) + p

(
1 +

dτ

v

)D/d)
+ Pr((V > v) ∨ (Pd > p)).

We are now ready to prove the general version of Theorem 1.10:

Theorem 4.5 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is weakly difference-bounded by ({bk}, {ck}, {δk}). Let µ =
E(X). Then, for any τ > 0, and any positive numbers γk, θk,

Pr(X − µ ≥ τ) ≤ exp

(
−τ 2

2v
(
1 + dτ

3v

) +

(
1 +

dτ

v

)D/d m∑
k=1

γk
θk

)
+
∑
k

δk
γk

(8)

where

v =
∑
k

(
(ck + θkbk)

2 +
γkb

2
k

θk

)
,

d = max
1≤k≤m

{ck + θkbk},

D = max
1≤k≤m

{bk}.

Proof: Let d = maxk{ck + θkbk}, and let D = maxk{bk}. We note that, for any
ω1, . . . , ωk−1, we have dev+

k (ω1, . . . , ωk−1) ≤ bk. So

max dev+ ≤ max
1≤k≤m

{bk} = D.

Fix some k. We say that ω− = (ω1, . . . , ωk−1) is “good” if

∀γk(x, y, ω+) ∈ Ωk × Ωk ×
m∏

i=k+1

Ωi, |X(ω−, x, ω+)−X(ω−, y, ω+)| ≤ ck.
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Let ζ be the probability that ω− is bad. Then, with probability at least ζγk, we have
|X(ω−, x, ω+)−X(ω−, y, ω+)| > ck. We conclude that ζγk ≤ δk, or ζ ≤ δk/γk.

Now, assume ω− is good. We say that x ∈ Xk is “good” if

∀θk(y, ω+) ∈ Ωk ×
m∏

i=k+1

Ωi, |X(ω−, x, ω+)−X(ω−, y, ω+)| ≤ ck.

Let ι be the probability that x is bad. Then

ιθk ≤ Pr
x,y,ω+

(|X(ω−, x, ω+)−X(ω−, y, ω+)| ≤ ck) ≤ γk,

so ι ≤ γk/θk.
Let φ(x) be the function of Note 2.6. If x is good, then

|φ(x)| = |Eω+(X(ω−, x, ω+))− Ey,ω+(X(ω−, y, ω+))|
≤ Ey,ω+(|X(ω−, x, ω+)−X(ω−, y, ω+)|)
≤ ck + θkbk.

For any x, |φ(x)| ≤ bk. So, for any good ω−,

Vark(ω−) = E(φ(x)2) ≤ (ck + θkbk)
2 +

γkb
2
k

θk
.

Also, since ck + θkbk ≤ d, we have φ(x) ≤ d whenever x is good, and hence

pk,d(ω−) ≤ Pr(x is bad) ≤ γk
θk
.

So, let

v =
m∑
k=1

(
(ck + θkbk)

2 +
γkb

2
k

θk

)
.

p =
m∑
k=1

γk
θk
.

If, for each k, (ω1, . . . , ωk−1) is good, then V (ω) ≤ v and Pd(ω) ≤ p. The probability that ω
is bad for some k is at most

∑
k
δk
γk

. The result now follows immediately from Theorem 4.3.
�

Corollary 4.6 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is weakly difference-bounded by (b, c, δ). Let µ = E(X). Then,
for any τ > 0, and any positive numbers γ, θ,

Pr(|X − µ| ≥ τ) ≤ 2

exp

 −τ 2

2v
(

1 + τ(c+θb)
3v

) +
mγ

θ

(
1 +

τ(c+ θb)

v

) b
c+θb

+
mδ

γ

 , (9)

where

v = m

(
(c+ θb)2 +

γb2

θ

)
.
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Proof: This is simply Theorem 4.5 with bk = b, ck = c, δk = δ, γk = γ, and θk = θ. This
implies that maxk{bk} = b and maxk{ck + θkbk} = c+ θb. �

We next consider how to choose the parameters γk and θk in Inequality (8), or γ and θ
in Inequality (9). As in Section 3, in applications to algorithmic stability [13], bk = Θ(1),
ck = Θ(1/m), and δk = exp(−Ω(m)).

Corollary 4.7 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is weakly difference-bounded by ({bk}, {ck}, {δk}). Assume bk ≥
ck > 0 for all k, and assume δk ≤ (ck/bk)

6 for all k. Let µ = E(X). Then, for any τ > 0,

Pr(|X − µ| ≥ τ) ≤

2

exp

 −τ 2

10
∑

k c
2
k

(
1 + dτ

15
∑
k c

2
k

) +

(
1 +

dτ

4
∑

k c
2
k

)D/d m∑
k=1

bkδ
1/2
k

ck

+
∑
k

δ
1/2
k

 ,

where d = 2 maxk{ck} and D = maxk{bk}.

Proof: Set θk = ck/bk and γk = δ
1/2
k and apply Theorem 4.5. By our assumption on δk,

we know γk ≤ (ck/bk)
3, so 4

∑
k c

2
k ≤ v ≤ 5

∑
k c

2
k. �

Theorem 4.8 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is weakly difference-bounded by (b, c, δ). Assume b ≥ c > 0, and
assume δ ≤ (c/b)6. Let µ = E(X). Then, for any τ > 0,

Pr(|X − µ| ≥ τ) ≤ 2

(
exp

(
−τ 2

10mc2
(
1 + 2τ

15mc

) +
mbδ1/2

c
exp

(
τb

4mc2

))
+mδ1/2

)
.

Proof: To prove Theorem 4.8, we use Corollary 4.7 with bk = b and ck = c, and hence
θk = c/b and γk = δ1/2. Note that d = 2c and D = b.

We also use the fact that 1 + (τ/2mc) ≤ exp(τ/2mc). �
Proof of Theorem 1.10: We use Theorem 4.8 with c = λ/m and δ = exp(−Km).

Note that, by our choice of m (see Note 1.11), and by Lemma 3.7, m
lnm

> 24
K
> 12

K
. Also,

m ≥ b
λ
. Thus,

(c
b

)6

=

(
λ

bm

)6

≥ m−12 = exp(−12 lnm) ≥ exp(−Km) = δ,

so Theorem 4.8 applies. For any τ ≥ 0, we have

Pr(|X − µ| ≥ τ) ≤ 2 exp

(
−τ 2m

10λ2
(
1 + 2τ

15λ

) +m2 b

λ
exp

(
−K

2
m

)
exp

(
τbm

4λ2

))

+ 2m exp

(
−K

2
m

)
. (10)

Since τ ≤ 15λ
2

, we have 1 + 2τ
15λ
≤ 2.
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Since τ ≤ λ2K
b

, we know that τbm
4λ2 ≤ K

4
m. Also, using m ≥ b

λ
, and m

lnm
> 24

K
,

m2 b

λ
≤ m3 = exp(3 lnm) ≤ exp

(
K

8
m

)
.

Similarly, m ≤ exp
(
K
24
m
)
. So, by Inequality (10), we get

Pr(|X − µ| ≥ τ) ≤ 2 exp

(
−τ 2m

20λ2
+ exp

(
−K

8
m

))
+ 2 exp

(
−11K

24
m

)
. (11)

Now, since m ≥ λ
√

40 and τ ≥ 1/m,

exp

(
−K

8
m

)
≤ m−3 ≤ 1

40λ2m
≤ τ 2m

40λ2
,

so Inequality (11) implies

Pr(|X − µ| ≥ τ) ≤ 2 exp

(
− τ

2m

40λ2

)
+ 2 exp

(
−11K

24
m

)
. (12)

Finally, since τ ≤ 4λ
√
K,

τ 2m

40λ2
≤ 2K

5
m <

11K

24
m,

so Inequality (12) gives us

Pr(|X − µ| ≥ τ) ≤ 4 exp

(
− τ

2m

40λ2

)
.

�

5 The case when λ = 0

In the applications in this thesis, c = λ/m, and δ → 0 exponentially in m. So the choice
of parameters in Theorems 3.6 and 4.8 is close to optimal. In particular, δ ≤ (c/b)6 for
sufficiently large m.

However, in some other settings, Theorems 3.6 and 4.8 are less useful; in particular, they
are vacuous when λ = c = 0. We now prove simpler inequalities which applies in this case.
We first prove Theorem 5.3, which is an analog of Theorem 4.8, and then Theorem 5.4,
which is an analog of Theorem 3.6.

Note 5.1 For ω ∈ Ω =
∏m

k=1 Ωk, i ∈ {1, . . . ,m}, and υ ∈ Ωi, we let ωi,υ denote the element
of Ω obtained by replacing the ith coordinate of ω with υ.

Lemma 5.2 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a random
variable on Ω.
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1. If X is weakly difference-bounded by (b, 0, δ), then, for any ω, χ ∈ Ω,

|X(ω)−X(χ)| ≤ mb.

2. If X is weakly difference-bounded by (b, 0, δ), then there is some χ ∈ Ω such that

Pr(X 6= X(χ)) ≤ mδ.

3. If X is strongly difference-bounded by (b, 0, δ), then there is some χ ∈ Ω such that

Pr(X 6= X(χ)) ≤ mδ

2
.

Proof: Given any two points ω = (ω1, . . . , ωm) and χ = (χ1, . . . , χm) in Ω, we define
ψi ∈ Ω as follows: let ψ0 = ω. For 1 ≤ i ≤ m, let

ψi = (ψi−1)i,χi = (χ1, . . . , χi, ωi+1, . . . , ωm),

so ψm = χ.
Proof of Part 1: Suppose X is weakly difference-bounded by (b, 0, δ). Then, for any

i,
|X(ψi−1)−X(ψi)| ≤ b.

Summing over i, we conclude
|X(ω)−X(χ)| ≤ mb.

�
Proof of Part 2: Suppose X is weakly difference-bounded by (b, 0, δ). For any i,

Pr
ω,χ

(X(ψi−1) 6= X(ψi)) ≤ δ.

Hence, adding up the probabilities,

Pr
ω,χ

(X(ω) 6= X(χ)) ≤ mδ.

By a total probability argument, we conclude that there exists some χ ∈ Ω for which
Prω(X(ω) 6= X(χ)) ≤ mδ. �

Proof of Part 3: Suppose X is strongly difference-bounded by (b, 0, δ). Let B denote
the bad set of Definition 1.6. For any i,

Pr
ω,χ

(ψi ∈ B) ≤ δ.

So, the probability that ψi ∈ B for some odd i is at most mδ/2. If ψi /∈ B for every odd i,
we must have X(ω) = X(χ). Therefore,

Pr
ω,χ

(X(ω) 6= X(χ)) ≤ mδ

2
.

By a total probability argument, we conclude that there exists some χ ∈ Ω for which
Prω(X(ω) 6= X(χ)) ≤ mδ/2 �

This concludes the lemma. �
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Theorem 5.3 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is weakly difference-bounded by (b, 0, δ). Let µ = E(X). Then

Pr(|X − µ| > m2bδ) ≤ mδ.

Proof: By Part 2 of Lemma 5.2, there is some χ ∈ Ω for which

Pr(|X −X(χ)| > 0) ≤ mδ.

By Part 1 of Lemma 5.2,
|X(ω)−X(χ)| ≤ mb

for every ω ∈ Ω. We conclude that

E(|X −X(χ)|) ≤ m2bδ,

which immediately implies that

|µ−X(χ)| ≤ m2bδ.

So,
Pr
(
|X − µ| > m2bδ

)
≤ Pr(X 6= X(χ)) ≤ mδ.

�

Theorem 5.4 Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

k=1 Ωk, and let X be a
random variable on Ω which is strongly difference-bounded by (b, 0, δ). Let µ = E(X). Then

Pr

(
|X − µ| > m2bδ

2

)
≤ mδ

2
.

Proof: The proof is similar to that of Theorem 5.3. By Part 3 of Lemma 5.2, there is
some χ ∈ Ω for which

Pr(|X −X(χ)| > 0) ≤ mδ

2
.

By Part 1 of Lemma 5.2 (we recall from Note 1.8 that strong difference-boundedness implies
weak difference-boundedness),

|X(ω)−X(χ)| ≤ mb

for every ω ∈ Ω. We conclude that

E(|X −X(χ)|) ≤ m2bδ

2
,

which immediately implies that

|µ−X(χ)| ≤ m2bδ

2
.

So,

Pr

(
|X − µ| > m2bδ

2

)
≤ Pr(X 6= X(χ)) ≤ mδ

2
.

�
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6 Open questions

Question 6.1 Can we prove a continuous version of Theorem 3.3 or Theorem 4.5?
McDiarmid’s original inequality, Theorem 3.2, requires a single bound on |X(ω)−X(ω′)|

for all ω, ω′. Our Theorem 4.5 uses two bounds: a large bound b which holds everywhere,
and a smaller bound c which holds for almost all choices of ω and ω′.

For any k, we can define a random variable on Ω× Ωk: we let

∆(ω, υ) = |X(ω)−X(ω′)|,

where ω′ is ω with the kth entry replaced by υ.
McDiarmid’s Theorem 3.2 uses sup(∆), and the proof uses Lemma 2.7, which bounds

E(eX) in terms of sup(X). Theorem 4.5 is based on bounding ∆ almost everywhere, and the
proof uses Lemma 2.8, which bounds E(eX) given exactly such information about a random
variable X.

Can we prove a more general McDiarmid-like inequality, giving a concentration bound
in terms of properties of ∆ (e.g., sup(∆),E(∆),Var(∆))?

McAllester [15] expresses a similar desire for a variance-based strengthening of Theo-
rem 3.2.

Such a result would have significant implications for the theory of algorithmic stability
[5, 13].

Question 6.2 Recently, Talagrand [21] proved a new inequality which can be used to gen-
eralize some applications of McDiarmid’s Theorem. McDiarmid [19] gives an overview of
Talagrand’s inequality with some applications. Boucheron, et al. [4] discuss McDiarmid’s
inequality and Talagrand’s inequality, as well as other concentration inequalities, with an
emphasis on learning theory applications.

Can we use Talagrand’s inequality to simplify the proofs in this paper, or to strengthen
the results?

Question 6.3 We prove Theorem 3.6 by first proving Theorem 3.3, and then choosing αk.
We prove Theorem 4.8 by first proving Theorem 4.5, and then choosing θk and γk. The choices
we make for these parameters are based on the assumption that b = Θ(1), c = Θ(1/m), and
δ = exp(−Ω(m)).

Can we choose these parameters more generally? What values of b, c, and δ arise in
natural applications, and what choices of αk, γk, and θk are best in these situations?
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Pradyut Shah for their comments.

References

[1] K. Azuma. Weighted sums of certain dependent random variables. Tôhoku Mathematical
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