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Abstract

Given real numbers aq, ..., oy, a simultaneous diophantine e-approximation is a sequence
of integers Pi,...,P,,Q such that @ > 0 and for all j € {1,...,n}, |Qo; — Pj| < e. A
simultaneous diophantine approximation is said to exclude the prime p if ) is not divisible
by p. Given real numbers «y,...,a,, a prime p and € > 0 we show that at least one of the
following holds

(a) there is a simultaneous diophantine e-approximation which excludes p, or
(b) there exist a1,...,a, € Z such that Y aja; = 1/p+t, t € Z and 3 |a;]| < n®?/e.

Note that in case (b) the a; witness that there is no simultaneous diophantine e/(n%2p)-
approximation excluding p.

We generalize the result to simultaneous diophantine e-approximations excluding several
primes.

We also consider the algorithmic problem of finding, in polynomial time, a simultaneous
diophantine e-approximation excluding a set of primes.

1 Introduction

Given real numbers oy, . . ., a,, a simultaneous diophantine e-approximation is a sequence of integers
Py, ..., P,,Q such that @) > 0 and for all j € [n], |Qa; — P;| < e. By Dirichlet’s theorem, for any
a1,...,a, and any € > 0 there is a simultaneous diophantine e-approximation P, ..., P,, @), where
Q<e ™

We say that a diophantine approximation excludes the prime p if p t @. Given a prime p, real
numbers ag,...,q, and € > 0, is there a simultaneous diophantine e-approximation excluding p?
For example if «; = 1/p and € < 1/p then an e-approximation excluding p is clearly not possible.
The following proposition generalizes this observation.



Proposition 1 Let ay,...,a, € Z be such that ) aja; =t/p where p 1 t. If

S gl < =, (1)

ep

then there is no simultaneous diophantine e-approximation excluding p.

Proof :
Suppose that we have P, ..., P,, Q such that |Qa; — P;| <e. Then

’Q%—Z%‘Pj = ‘QZ%%‘—Z%‘PJ <e) oyl < ]}3-

This implies p | Qt and therefore p | Q. [ |

Proposition [[ says that certain linear relations with small coefficients are obstacles to simultaneous
diophantine approximation excluding p. Our main result is a converse of this statement.

Theorem 1.1 Let ay,...,qa, be real numbers. Let p be a prime. If there is no simultaneous
diophantine e-approximation of o, ..., «q, excluding p, then there exist integers aq,...,a,,s such
that

1
Zajajzzg—l—s

and
2

Za? < Z—2 (2)

Remark 1 Note that (B) implies that Y |a;| < n%?2/e. Hence the gap between the necessary upper
bound (P]) and the sufficient upper bound ([[) for the absence of e-approximation excluding p is
n3/2p (independent of € and the «;).

We use the notation [m] = {1,...,m}. Given real numbers oy, ..., &, 51,. .., Bm, a nonhomo-
geneous diophantine e-approximation is a sequence of integers Py, ..., P,,Q such that ¢) > 0 and
for all j € [m], |Qa; — P; — ;] < . Nonhomogeneous diophantine e-approximation need not exist.

Theorem 1.2 (Kronecker, see [Casb7, Lov&6]) Let oy, ..., Qn; 01, ..., 0m € R. Then exactly
one of the following holds.

o Foranye > 0 there are Py, ..., Py, Q such that Q > 0 and for all j € [m], |Qo;—P;— ;] < e.

o There are integers aq, ..., a, such that ) aja; is an integer and ) a;f3; is not an integer.

Let £ < 1/p. A nonhomogeneous diophantine e-approximation of the numbers

1 1
at,...,0p,,—0,...,0,—, (3)
p p
gives a simultaneous diophantine e-approximation of oy, ..., a, excluding p. Hence the following is

immediate from Kronecker’s theorem.



Corollary 1.3 Let ay, ..., ay, be real numbers. Let p be a prime. Then exactly one of the following

holds

e For any € > 0 there is a simultaneous diophantine e-approximation of aq, ..

o There are integers ai, ..., a,,t such that p { t and > a;a; =t/p.

Theorem T is an effective version of this result.

.,y excluding p.
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2 Proof

We will use a technique due to Banaszczyk [Ban93]. Given a measure p on R?, its Fourier transform

is the function R¢ — R given by
fity) = [ exp(zriy'a) du(z).

For A C R? we let

p(4) = 3 exp(—Ja]?).

z€A

Let L be a lattice in R%. Let o7, be the discrete measure given by
o1(X) = p(X N L)/p(L).

Plugging the definition of o, into (f]) we obtain

_ 1 2 T
oL(y) = m;exp(—WHxH ) exp(2miy” x).

Let
¢r(r) = p(L+x)/p(L).

Let L* be the dual lattice of L. Banaszczyk proved the following two results.

(4)

Lemma 2.1 ([Ban93]) The Fourier transform of the measure oy, associated with the lattice L is

the function ¢« associated with the dual lattice L*.

oL = Pr-

Let B be the unit ball in R¢.



Lemma 2.2 ([Ban93]) For any ¢ > (2r)"'/? and u € R?

p((L+u)/eVdB) < 2 (c 27e e”z>d.

[ |
For d > 3 we let ¢ = \/1 — 1/d in Lemma P.9 and obtain following bound.
Corollary 2.3 For any u € R?
L d—1B
p(Lrw\VI=1B) _
p(L)
|

If there is no vector in L* at distance < +/d — 1 from u, then

p(L* +u) = p((L* +u) \Vd = 1B) < —p(L").

| =

Hence o7 (u) = ¢« (u) < 1/4. Thus large o7 (u) implies the existence of w € L* close to w.

Corollary 2.4 Let u € R If o7(u) > 1/4 then there is a vector w in the dual lattice L* such

that ||lu — w|| < vd—1.
|

Proof of Theorem M1
Let d = n+ 1. Let v be a positive rational number to be chosen later. Let L C R? be the lattice

generated by the columns by, ..., b, of the matrix B,
ai
[ PAL I :
€ ap,
0 0 v
The dual lattice L* C R is generated by the columns bf,...,b%,; of the matrix B~ (inverse-
transpose),
0
_ € I :
B T - = .
vn 0
—ofv ... —an/v 1jv

Given a vector w € L, let U(w) be the coefficient of b, in the expression of w. We can tell the
coefficient by looking at the last coordinate of w, i.e.,

U(w)

V\/ﬁ nt1™h



where e, = (0,...,0,1).
If there is a vector w in L of euclidean norm ||w||]s < y/n such that U(w) # 0 (mod p), then we

have an diophantine e-approximation of ay, ..., o, excluding p (we use ||w||s < ||w||2). Thus by
the assumption of Theorem [L.1] all vectors w € L with ||w||z < y/n have U(w) = 0 (mod p).
Let v = Lenﬂ. We have

pr/n

Fi(u) = —— 3" exp(—llal[2) exp(2mill (z) /p) >

p(L) &
) | (5)
D > exp(—n||z|]*) exp(2mil (z) /p)| — o) > exp(—l[z|*) exp(2mil (z) /p)|.
P etavnB P einvmB
All vectors « € L of norm ||z||]2 < v/n have exp(2miU(x)/p) = 1. Hence
— 1 1
or(u) > (L) Z exp(—||z|[*) — (D) Z exp(—n||z|[*) =
P z€LNy/nB P z€L\v/nB
2 p(L\ vnB)
——— > exp(-mllal]’) =1-29=—F—
o0 2= o(L)
Thus, using Corollary .3,
or(u) >1—2/4. (6)

Hence from Corollary 4 it follows that there is a vector w € L*, w = a;b] + ... a,b}, + cbj, ., such
that w is at distance < v/d — 1 = y/n from u. We have

2
1
Za?ﬁ% and )Zajaj—};—c S%. (7)

Let v — 0. There are finitely many choices for the a; and ¢, hence there exist integers a; and ¢

such that
E 2 < i nd g =0

3 Excluding several primes

We say that a diophantine approximation excludes a set of primes {pi,...,px} if it excludes all the
pe- The following observation is a generalization of Proposition [I.

t

Proposition 2 Let ay,...,a, € Z be such that > ajo; = > "L where for at least one { € k],
De

De T lfg. [f

1
| < — 8
> lojl < ®)

then there is no e-simultaneous diophantine approzimation excluding {p1,...,px}-

5



We can generalize Theorem [[[1] to approximations excluding a set of primes.

Theorem 3.1 If there is no simultaneous diophantine e-approximation excluding {p1,...,px}, then
there exist integers ay, ..., a,,s and A C [k] such that
Z ajo; = Z l + s
tea Pt
and

Z a? < max{n® k?}/e*. (9)

The proof of Theorem B.1] is similar to the proof of Theorem [[.1. Instead of (f|) we consider
following sum

5 2 expl=nljal[) [] (1 — exp(2rit/(@) /).

€L telk]

We also use that for m = max{v/d — 1, vk}, any u € R? and any lattice L C R?% d >3

1
p((L+u)\mB) < Wp(L).
Following result is used in the proof instead of Corollary 2.4.

Corollary 3.2 If (u) > 1/2¥ then there is a vector w in the dual lattice L* such that ||u —

wl|| < max{v/d — 1,Vk}.
| |

Remark 2 Note that ([) implies that 3" |a;| < n'?max{n,k}/e. Hence the gap between the
necessary upper bound () and the sufficient upper bound (f) for the absence of e-approximation
excluding {p1,...,pr} is n'/2max{n, k}p; - - - px (independent of € and the a;).

4 A polynomial-time algorithm

Suppose that there exists a simultaneous diophantine e-approximation P,..., P,,Q of a,..., a,
excluding p. Is there a way to efficiently find a simultaneous diophantine f(n)e-approximation of
ai, ..., qp excluding p?

We assume that aq,...,q, are rational numbers. The length of the input is the sum of the
lengths of the input numbers a1, ..., a,,c and p. The length of a = a/b is the length of a in binary
plus length of b in binary. By efficiently we mean in polynomial time in the input length.

Theorem 4.1 Let oy, ..., qa, be rational numbers. Let p be a prime. Suppose that there exists a
simultaneous diophantine e-approzimation Py, ..., P,, Q of aq,...,«a, excluding p. We can find in
polynomial time a simultaneous diophantine C,,11pe-approrimation of o, . . ., oy, excluding p, where

C, = 4/n2"2.



We will use Babai’s modification [Bab86] of Lovész’s lattice algorithm [LLL8?, Lov&6]. In [Babi6]

L, v Oeldl, 1l jbdloll

the following result is proven for ey = --- = g,,,; the general case follows from the same proof.

Theorem 4.2 ([BabR],Theorem 7.1) Let ay,...,0m, b1y, Bm,e1 > 0,...,6;m > 0 be given
rational numbers. Let ¢ > 0 be the smallest integer Q) for which there exist P, ..., P, such that
|Qo; — P; — 35| < ¢gj for all j € [m]; we let ¢ = oo if no such q ezists. One can find in polynomial
time either

(a) a proof that ¢ = 0o, or
(b) integers Py, ..., Py, Q such that
o |Qa; — P, — 3| < Cyej for all j € [m], and
e |Q < Chg,
where Cp, = 4y/m2™/2.
[

Proof of Theorem A1

Multiplying P, ..., P,, @ by the multiplicative inverse of @) in Z/pZ we obtain a simultaneous
diophantine pe-approximation P{, ..., P!, Q" of ay,...,a, with Q" =1 (mod p). Hence there exists
a nonhomogeneous diophantine approximation of ay, ..., 1/p;0,...,0,1/p withe; =--- =¢, =
pe and €,41 = €. Now by Theorem 1.2 we can find, in polynomial time, Py,..., P/ ;, Q" such
that |Q"a; — P/| < Cpape and |Q"/p — Py — 1/p| < Chyie. Hence if Cpyipe < 1 we have

Q" =1 (mod p). Therefore Q”, P/, ..., P! is a simultaneous diophantine C), ;1pe-approximation of
at, ..., ap excluding p. For C),11pe > 1, Theorem [.1] holds vacuously. [ |

We can generalize Theorem B to several primes.

Theorem 4.3 Let a,...,a,,c be rational numbers. Let py,...,pr be primes. Suppose that there
exists a simultaneous diophantine e-approximation Py, ..., P,,Q of aq, . .., o, excluding {p1, ..., px}-
We can find, in polynomial time, a simultaneous diophantine Cp xpy - - - pre-approximation of aq, . .., vy,
excluding {p1, ..., pr}, where C,, = 4y/n2"/2.

Proof sketch

We multiply P, ..., P,, @ by the multiplicative inverse of () in the ring Z/p; - - - pxZ. Then, similarly
as in the proof of Theorem F.1, we use nonhomogeneous diophantine approximation for

a/la--'aa’rh]-/pla"'71/pk’;07"'7071/p17'"a]-/pk'
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