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Abstract

Given real numbers α1, . . . , αn, a simultaneous diophantine ε-approximation is a sequence
of integers P1, . . . , Pn, Q such that Q > 0 and for all j ∈ {1, . . . , n}, |Qαj − Pj | ≤ ε. A
simultaneous diophantine approximation is said to exclude the prime p if Q is not divisible
by p. Given real numbers α1, . . . , αn, a prime p and ε > 0 we show that at least one of the
following holds

(a) there is a simultaneous diophantine ε-approximation which excludes p, or

(b) there exist a1, . . . , an ∈ Z such that
∑
ajαj = 1/p+ t, t ∈ Z and

∑
|aj | ≤ n3/2/ε.

Note that in case (b) the aj witness that there is no simultaneous diophantine ε/(n3/2p)-
approximation excluding p.

We generalize the result to simultaneous diophantine ε-approximations excluding several
primes.

We also consider the algorithmic problem of finding, in polynomial time, a simultaneous
diophantine ε-approximation excluding a set of primes.

1 Introduction

Given real numbers α1, . . . , αn, a simultaneous diophantine ε-approximation is a sequence of integers
P1, . . . , Pn, Q such that Q > 0 and for all j ∈ [n], |Qαj − Pj| ≤ ε. By Dirichlet’s theorem, for any
α1, . . . , αn and any ε > 0 there is a simultaneous diophantine ε-approximation P1, . . . , Pn, Q, where
Q ≤ ε−n.

We say that a diophantine approximation excludes the prime p if p - Q. Given a prime p, real
numbers α1, . . . , αn and ε > 0, is there a simultaneous diophantine ε-approximation excluding p?
For example if α1 = 1/p and ε < 1/p then an ε-approximation excluding p is clearly not possible.
The following proposition generalizes this observation.
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Proposition 1 Let a1, . . . , an ∈ Z be such that
∑
ajαj = t/p where p - t. If∑

|aj| <
1

εp
, (1)

then there is no simultaneous diophantine ε-approximation excluding p.

Proof :
Suppose that we have P1, . . . , Pn, Q such that |Qαj − Pj| ≤ ε. Then∣∣∣Qt

p
−
∑

ajPj

∣∣∣ =
∣∣∣Q∑ ajαj −

∑
ajPj

∣∣∣ ≤ ε
∑
|aj| <

1

p
.

This implies p | Qt and therefore p | Q. �

Proposition 1 says that certain linear relations with small coefficients are obstacles to simultaneous
diophantine approximation excluding p. Our main result is a converse of this statement.

Theorem 1.1 Let α1, . . . , αn be real numbers. Let p be a prime. If there is no simultaneous
diophantine ε-approximation of α1, . . . , αn excluding p, then there exist integers a1, . . . , an, s such
that ∑

ajαj =
1

p
+ s

and ∑
a2
j ≤

n2

ε2
. (2)

Remark 1 Note that (2) implies that
∑
|aj| ≤ n3/2/ε. Hence the gap between the necessary upper

bound (2) and the sufficient upper bound (1) for the absence of ε-approximation excluding p is
n3/2p (independent of ε and the αj).

We use the notation [m] = {1, . . . ,m}. Given real numbers α1, . . . , αm, β1, . . . , βm, a nonhomo-
geneous diophantine ε-approximation is a sequence of integers P1, . . . , Pm, Q such that Q > 0 and
for all j ∈ [m], |Qαj −Pj − βj| ≤ ε. Nonhomogeneous diophantine ε-approximation need not exist.

Theorem 1.2 (Kronecker, see [Cas57, Lov86]) Let α1, . . . , αm; β1, . . . , βm ∈ R. Then exactly
one of the following holds.

• For any ε > 0 there are P1, . . . , Pm, Q such that Q > 0 and for all j ∈ [m], |Qαj−Pj−βj| ≤ ε.

• There are integers a1, . . . , am such that
∑
ajαj is an integer and

∑
ajβj is not an integer.

�

Let ε < 1/p. A nonhomogeneous diophantine ε-approximation of the numbers

α1, . . . , αn,
1

p
; 0, . . . , 0,

1

p
, (3)

gives a simultaneous diophantine ε-approximation of α1, . . . , αn excluding p. Hence the following is
immediate from Kronecker’s theorem.
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Corollary 1.3 Let α1, . . . , αn be real numbers. Let p be a prime. Then exactly one of the following
holds

• For any ε > 0 there is a simultaneous diophantine ε-approximation of α1, . . . , αn excluding p.

• There are integers a1, . . . , an, t such that p - t and
∑
ajαj = t/p.

�

Theorem 1.1 is an effective version of this result.

Acknowledgements. I would like to thank László Babai for introducing me to the problem of
simultaneous diophantine approximations excluding a prime and for suggesting many improvements
to the paper. Thanks to Samuel Kutin for stimulating discussions.

2 Proof

We will use a technique due to Banaszczyk [Ban93]. Given a measure µ on Rd, its Fourier transform
is the function Rd → R given by

µ̂(y) =

∫
exp(2πiyTx) dµ(x). (4)

For A ⊆ Rd we let
ρ(A) =

∑
x∈A

exp(−π||x||2).

Let L be a lattice in Rd. Let σL be the discrete measure given by

σL(X) = ρ(X ∩ L)/ρ(L).

Plugging the definition of σL into (4) we obtain

σ̂L(y) =
1

ρ(L)

∑
x∈L

exp(−π||x||2) exp(2πiyTx).

Let
φL(x) = ρ(L+ x)/ρ(L).

Let L∗ be the dual lattice of L. Banaszczyk proved the following two results.

Lemma 2.1 ([Ban93]) The Fourier transform of the measure σL associated with the lattice L is
the function φL∗ associated with the dual lattice L∗.

σ̂L = φL∗ .

�

Let B be the unit ball in Rd.
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Lemma 2.2 ([Ban93]) For any c ≥ (2π)−1/2 and u ∈ Rd

ρ((L+ u)/c
√
dB) < 2

(
c
√

2πe e−πc
2
)d
.

�

For d ≥ 3 we let c =
√

1− 1/d in Lemma 2.2 and obtain following bound.

Corollary 2.3 For any u ∈ Rd

ρ
(
(L+ u) \

√
d− 1B

)
ρ(L)

≤ 1/4.

�

If there is no vector in L∗ at distance ≤
√
d− 1 from u, then

ρ(L∗ + u) = ρ
(
(L∗ + u) \

√
d− 1B

)
≤ 1

4
ρ(L∗).

Hence σ̂L(u) = φL∗(u) ≤ 1/4. Thus large σ̂L(u) implies the existence of w ∈ L∗ close to u.

Corollary 2.4 Let u ∈ Rd. If σ̂L(u) > 1/4 then there is a vector w in the dual lattice L∗ such
that ||u− w|| ≤

√
d− 1.

�

Proof of Theorem 1.1
Let d = n + 1. Let ν be a positive rational number to be chosen later. Let L ⊆ Rd be the lattice
generated by the columns b1, . . . , bn+1 of the matrix B,

B =

√
n

ε


α1

I
...
αn

0 . . . 0 ν

 .

The dual lattice L∗ ⊆ R
d is generated by the columns b∗1, . . . , b

∗
n+1 of the matrix B−T (inverse-

transpose),

B−T =
ε√
n


0

I
...
0

−α1/ν . . . −αn/ν 1/ν

 .

Given a vector w ∈ L, let U(w) be the coefficient of bn+1 in the expression of w. We can tell the
coefficient by looking at the last coordinate of w, i. e.,

U(w) =
ε

ν
√
n
eTn+1w,
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where en+1 = (0, . . . , 0, 1).
If there is a vector w in L of euclidean norm ||w||2 ≤

√
n such that U(w) 6≡ 0 (mod p), then we

have an diophantine ε-approximation of α1, . . . , αn excluding p (we use ||w||∞ ≤ ||w||2). Thus by
the assumption of Theorem 1.1 all vectors w ∈ L with ||w||2 ≤

√
n have U(w) ≡ 0 (mod p).

Let u =
ε

pν
√
n
en+1. We have

σ̂L(u) =
1

ρ(L)

∑
x∈L

exp(−π||x||2) exp(2πiU(x)/p) ≥∣∣∣∣∣ 1

ρ(L)

∑
x∈L∩

√
nB

exp(−π||x||2) exp(2πiU(x)/p)

∣∣∣∣∣−
∣∣∣∣∣ 1

ρ(L)

∑
x∈L\

√
nB

exp(−π||x||2) exp(2πiU(x)/p)

∣∣∣∣∣.
(5)

All vectors x ∈ L of norm ||x||2 ≤
√
n have exp(2πiU(x)/p) = 1. Hence

σ̂L(u) ≥ 1

ρ(L)

∑
x∈L∩

√
nB

exp(−π||x||2)− 1

ρ(L)

∑
x∈L\

√
nB

exp(−π||x||2) =

1− 2

ρ(L)

∑
x∈L\

√
nB

exp(−π||x||2) = 1− 2
ρ(L \

√
nB)

ρ(L)

Thus, using Corollary 2.3,

σ̂L(u) ≥ 1− 2/4. (6)

Hence from Corollary 2.4 it follows that there is a vector w ∈ L∗, w = a1b
∗
1 + . . . anb

∗
n + cb∗n+1 such

that w is at distance ≤
√
d− 1 =

√
n from u. We have∑

a2
j ≤

n2

ε2
and

∣∣∣∑ ajαj −
1

p
− c
∣∣∣ ≤ νn

ε
. (7)

Let ν → 0. There are finitely many choices for the aj and c, hence there exist integers aj and c
such that ∑

a2
j ≤

n2

ε2
and

∣∣∣∑ ajαj −
1

p
− c
∣∣∣ = 0.

�

3 Excluding several primes

We say that a diophantine approximation excludes a set of primes {p1, . . . , pk} if it excludes all the
p`. The following observation is a generalization of Proposition 1.

Proposition 2 Let a1, . . . , an ∈ Z be such that
∑
ajαj =

∑ t`
p`

where for at least one ` ∈ [k],

p` - t`. If ∑
|aj| <

1

εp1 · · · pk
, (8)

then there is no ε-simultaneous diophantine approximation excluding {p1, . . . , pk}.
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We can generalize Theorem 1.1 to approximations excluding a set of primes.

Theorem 3.1 If there is no simultaneous diophantine ε-approximation excluding {p1, . . . , pk}, then
there exist integers a1, . . . , an, s and A ⊆ [k] such that∑

ajαj =
∑
`∈A

1

p`
+ s

and ∑
a2
j ≤ max{n2, k2}/ε2. (9)

The proof of Theorem 3.1 is similar to the proof of Theorem 1.1. Instead of (5) we consider
following sum

1

ρ(L)

∑
x∈L

exp(−π||x||2)
∏
t∈[k]

(1− exp(2πiU(x)/pt)).

We also use that for m = max{
√
d− 1,

√
k}, any u ∈ Rd and any lattice L ⊆ Rd, d ≥ 3

ρ
(
(L+ u) \mB

)
<

1

2k+1
ρ(L).

Following result is used in the proof instead of Corollary 2.4.

Corollary 3.2 If σ̂L(u) > 1/2k+1, then there is a vector w in the dual lattice L∗ such that ||u −
w|| ≤ max{

√
d− 1,

√
k}.

� �

Remark 2 Note that (9) implies that
∑
|aj| ≤ n1/2 max{n, k}/ε. Hence the gap between the

necessary upper bound (9) and the sufficient upper bound (8) for the absence of ε-approximation
excluding {p1, . . . , pk} is n1/2 max{n, k}p1 · · · pk (independent of ε and the αj).

4 A polynomial-time algorithm

Suppose that there exists a simultaneous diophantine ε-approximation P1, . . . , Pn, Q of α1, . . . , αn
excluding p. Is there a way to efficiently find a simultaneous diophantine f(n)ε-approximation of
α1, . . . , αn excluding p?

We assume that α1, . . . , αn are rational numbers. The length of the input is the sum of the
lengths of the input numbers α1, . . . , αn, ε and p. The length of α = a/b is the length of a in binary
plus length of b in binary. By efficiently we mean in polynomial time in the input length.

Theorem 4.1 Let α1, . . . , αn be rational numbers. Let p be a prime. Suppose that there exists a
simultaneous diophantine ε-approximation P1, . . . , Pn, Q of α1, . . . , αn excluding p. We can find in
polynomial time a simultaneous diophantine Cn+1pε-approximation of α1, . . . , αn excluding p, where
Cn = 4

√
n2n/2.

6



We will use Babai’s modification [Bab86] of Lovász’s lattice algorithm [LLL82, Lov86]. In [Bab86]
the following result is proven for ε1 = · · · = εm; the general case follows from the same proof.

Theorem 4.2 ([Bab86],Theorem 7.1) Let α1, . . . , αm, β1, . . . , βm, ε1 > 0, . . . , εm > 0 be given
rational numbers. Let q > 0 be the smallest integer Q for which there exist P1, . . . , Pm such that
|Qαj − Pj − βj| ≤ εj for all j ∈ [m]; we let q =∞ if no such q exists. One can find in polynomial
time either

(a) a proof that q =∞, or

(b) integers P1, . . . , Pm, Q such that

• |Qαj − Pj − βj| ≤ Cmεj for all j ∈ [m], and

• |Q| ≤ Cmq,

where Cm = 4
√
m2m/2.

�

Proof of Theorem 4.1
Multiplying P1, . . . , Pn, Q by the multiplicative inverse of Q in Z/pZ we obtain a simultaneous
diophantine pε-approximation P ′1, . . . , P

′
n, Q

′ of α1, . . . , αn with Q′ ≡ 1 (mod p). Hence there exists
a nonhomogeneous diophantine approximation of α1, . . . , αn, 1/p; 0, . . . , 0, 1/p with ε1 = · · · = εn =
pε and εn+1 = ε. Now by Theorem 4.2 we can find, in polynomial time, P ′′1 , . . . , P

′′
n+1, Q

′′ such
that |Q′′αj − P ′′j | ≤ Cn+1pε and |Q′′/p − P ′′n+1 − 1/p| < Cn+1ε. Hence if Cn+1pε < 1 we have
Q′′ ≡ 1 (mod p). Therefore Q′′, P ′′1 , . . . , P

′′
n is a simultaneous diophantine Cn+1pε-approximation of

α1, . . . , αn excluding p. For Cn+1pε ≥ 1, Theorem 4.1 holds vacuously. �

We can generalize Theorem 4.1 to several primes.

Theorem 4.3 Let α1, . . . , αn, ε be rational numbers. Let p1, . . . , pk be primes. Suppose that there
exists a simultaneous diophantine ε-approximation P1, . . . , Pn, Q of α1, . . . , αn excluding {p1, . . . , pk}.
We can find, in polynomial time, a simultaneous diophantine Cn+kp1 · · · pkε-approximation of α1, . . . , αn
excluding {p1, . . . , pk}, where Cn = 4

√
n2n/2.

Proof sketch
We multiply P1, . . . , Pn, Q by the multiplicative inverse of Q in the ring Z/p1 · · · pkZ. Then, similarly
as in the proof of Theorem 4.1, we use nonhomogeneous diophantine approximation for

α1, . . . , αn, 1/p1, . . . , 1/pk; 0, . . . , 0, 1/p1, . . . , 1/pk.

�
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